Publication Date


Journal or Book Title

Biophysical Journal


Nonpenetrating traumatic brain injuries (TBI) are linked to cavitation. The structural organization of the brain makes it particularly susceptible to tears and fractures from these cavitation events, but limitations in existing characterization methods make it difficult to understand the relationship between fracture and cavitation in this tissue. More broadly, fracture energy is an important, yet often overlooked, mechanical property of all soft tissues. We combined needle-induced cavitation (NIC) with hydraulic fracture models to induce and quantify fracture in intact brains at precise locations. We report here the first measurements of the fracture energy of intact brain tissue that range from 1.5 to 8.9 J/m2, depending on the location in the brain and the model applied. We observed that fracture consistently occurs along interfaces between regions of brain tissue, which allow cavitation-related damage to propagate several millimeters away from the initial injury site. Quantifying the forces necessary to fracture brain and other soft tissues is critical for understanding how impact and blast waves damage tissue in vivo and has implications for the design of protective gear and tissue engineering.



UMass Amherst Open Access Policy

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Supplemental Information.docx (1154 kB)
Supplemental Figures and Methods

MovieS1.mp4 (21602 kB)
Movie S1

MovieS2.mp4 (32613 kB)
Movie S2

MovieS3.mp4 (10538 kB)
Movie S3

MovieS4.mp4 (4568 kB)
Movie S4

MovieS5.mp4 (13475 kB)
Movie S5

MovieS6.mp4 (6521 kB)
Movie S6

MovieS7.mp4 (6387 kB)
Movie S7

Available for download on Thursday, July 13, 2023