Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Functionalized quantum dots for dispersion in polymers and cross -linking at interfaces

Habib Skaff, University of Massachusetts Amherst


Quantum dots are attractive potential components for next generation technologies such as light emitting diodes, sensors, and photovoltaic cells due to their unique and tunable electro-optical properties. The effective integration of quantum dots into devices requires a stable dispersion or self-assembly of the quantum dots in the solid-state. Such dispersions or assemblies are dictated by the interactions between the ligand environment of the quantum dots and the chosen polymer matrix. This thesis will highlight key contributions to the area of tailored cadmium selenide nanocrystals through the use of novel, functionalized ligands. This includes the utilization of ring-opening metathesis polymerization (ROMP), reversible addition fragmentation chain-transfer (RAFT) polymerization, and metal mediated couplings to control the polymer composition and molecular weight in radial polymerizations from CdSe nanocrystals. CdSe quantum dots were also found to assembly at the interface of immiscible fluids, and through appropriately functionalization these assemblies were effectively cross-linked. The key fording in this work is the retention of the inherent quantum dot fluorescence following these polymerization methods.

Subject Area


Recommended Citation

Skaff, Habib, "Functionalized quantum dots for dispersion in polymers and cross -linking at interfaces" (2005). Doctoral Dissertations Available from Proquest. AAI3163710.