Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Engineering surface functionality of gold nanoparticles for therapeutic applications

Chaekyu Kim, University of Massachusetts Amherst


Over the past few decades, tremendous efforts have been made to develop nanomaterials for biotechnological applications such as therapeutics. Understanding and engineering interfaces between biomacromolecules and nanomaterials is a key to the creation of successful therapeutic systems. My research has been oriented toward developing therapeutic systems using gold nanoparticles (AuNPs) incorporating material science, organic synthesis, and biology. For this purpose, mixed monolayer protected AuNPs (∼2 nm core size) with various functional groups have been employed for triggering therapeutic effects. Several strategies have been accomplished using anticancer drugs that non-covalently and covalently incorporate onto AuNPs as a drug delivery carrier. Alternatively, AuNPs were developed by regulating host-guest complexation processes inside the cell, allowing control of the therapeutic effect of the AuNP. In addition, by using host-guest chemical events on the AuNPs, exocytosis of the AuNPs was controlled, enabling their prolonged retention inside of the cells, providing new strategies for improving conventional drug delivery systems. Therefore, engineering of the AuNP surface can afford new pathways for designing and improving therapeutics.

Subject Area

Inorganic chemistry|Organic chemistry|Nanoscience|Pharmacy sciences

Recommended Citation

Kim, Chaekyu, "Engineering surface functionality of gold nanoparticles for therapeutic applications" (2011). Doctoral Dissertations Available from Proquest. AAI3498355.