Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Decision tree algorithms for handwritten digit recognition

Kenneth Joseph Wilder, University of Massachusetts Amherst


We present an original algorithm for recognizing handwritten digits. We begin by introducing a virtually infinite collection of binary geometric features. The features are queries that ask if a particular geometric arrangement of local topographic codes is present in an image. The codes, which we call "tags", are too coarse and common to be informative by themselves, but the presence of geometric arrangements of tags ("tag arrangements") can provide substantial information about the shape of an image. Tag arrangements are features that are well-suited for handwritten digit recognition as their presence in an image is unaffected by a large number of transformations that do not affect the class of the image. It is impossible to calculate all of the features in an image. We therefore use decision trees to simultaneously determine a small collection of informative features and construct a classifier. By only considering a small random sample of queries at each mode we are able to generate multiple, randomized trees that determine a more varied and informative collection of features than is possible with a single tree. The trees, which provide posterior estimates of the class probabilities, are aggregated to produce a stable and robust classifier. We analyze the performance of this method and propose several means of augmenting its performance. Most notably, we introduce a nearest neighbor final test that reduces the already low error rate an additional 20-30%. Testing was done on a subset of a National Institute of Standards and Technology database, and we report a classification rate of 99.6%, comparable to the top results reported elsewhere.

Subject Area

Mathematics|Electrical engineering|Artificial intelligence|Computer science

Recommended Citation

Wilder, Kenneth Joseph, "Decision tree algorithms for handwritten digit recognition" (1998). Doctoral Dissertations Available from Proquest. AAI9823791.