Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author

Hoa VuFollow

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Computer Science

Year Degree Awarded

2018

Month Degree Awarded

September

First Advisor

Andrew McGregor

Subject Categories

Theory and Algorithms

Abstract

In contrast to the traditional random access memory computational model where the entire input is available in the working memory, the data stream model only provides sequential access to the input. The data stream model is a natural framework to handle large and dynamic data. In this model, we focus on designing algorithms that use sublinear memory and a small number of passes over the stream. Other desirable properties include fast update time, query time, and post processing time.

In this dissertation, we consider different problems in graph theory, combinatorial optimization, and high dimensional data processing.

The first part of this dissertation focuses on algorithms for graph theory and combinatorial optimization. We present new results for the problems of finding the densest subgraph, counting the number of triangles, finding max cut with bounded components, and finding the maximum $k$ set coverage.

The second part of this dissertation considers problems in high dimensional data streams. In this setting, each stream item consists of multiple coordinates corresponding to different attributes. We consider the problem of testing or learning about the relationships among the attributes, and the problem of finding heavy hitters in subsets of attributes.

Share

COinS