Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier


Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program


Year Degree Awarded


Month Degree Awarded


First Advisor

Siman Wong

Subject Categories

Number Theory


In this thesis, we prove that, a selfdual 3-dimensional Galois representation constructed by van Geemen and Top is isomorphic to a quadratic twist of the symmetric square of the Tate module of an elliptic curve. This is an application of our refinement of the Faltings-Serre method to 3-dimensional Galois representations with ground field not equal to Q. The proof makes use of the Faltings-Serre method, $\ell$-adic Lie algebra, and Burnside groups.

Included in

Number Theory Commons