Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Title

Continua

Author

Lu ChenFollow

Author ORCID Identifier

https://orcid.org/0000-0002-1222-5771

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Philosophy

Year Degree Awarded

2020

Month Degree Awarded

May

First Advisor

Phillip Bricker

Abstract

The subject of my dissertation is the structure of continua and, in particular, of physical space and time. Consider the region of space you occupy: is it composed of indivisible parts? Are the indivisible parts, if any, extended? Are there infinitesimal parts? The standard view that space is composed of unextended points faces both a priori and empirical difficulties. In my dissertation, I develop and evaluate several novel approaches to these questions based on metaphysical, mathematical and physical considerations. In particular, I develop and evaluate two infinitesimal theories of space based on Robinson's nonstandard analysis. I argue that Infinitesimal Gunk, according to which every region is further divisible and some regions have infinitesimal sizes, has distinct advantages over alternative gunky views. I also advance a new account of distance for atomistic space, the mixed account, in response to Weyl's tile argument, which is an influential argument against the view that space is composed of indivisible regions. Having these theories in stock, we make progress in discovering the best theory of continua.

DOI

https://doi.org/10.7275/rt5g-rw11

Share

COinS