Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier

http://orcid.org/0000-0001-9076-2727

AccessType

Open Access Dissertation

Document Type

dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Electrical and Computer Engineering

Year Degree Awarded

2021

Month Degree Awarded

September

First Advisor

Sandip Kundu

Second Advisor

Wayne P. Burleson

Third Advisor

Daniel E. Holcomb

Fourth Advisor

Adam O'Neill

Subject Categories

Digital Circuits | Electronic Devices and Semiconductor Manufacturing | VLSI and Circuits, Embedded and Hardware Systems

Abstract

The continued growth of information technology (IT) industry and proliferation of interconnected devices has aggravated the problem of ensuring security and necessitated the need for novel, robust solutions. Physically unclonable functions (PUFs) have emerged as promising secure hardware primitives that can utilize the disorder introduced during manufacturing process to generate unique keys. They can be utilized as \textit{lightweight} roots-of-trust for use in authentication and key generation systems. Unlike insecure non-volatile memory (NVM) based key storage systems, PUFs provide an advantage -- no party, including the manufacturer, should be able to replicate the physical disorder and thus, effectively clone the PUF. However, certain practical problems impeded the widespread deployment of PUFs. This dissertation addresses such problems of (i) reliability and (ii) unclonability. Also, obfuscation techniques have proven necessary to protect intellectual property in the presence of an untrusted supply chain and are needed to aid against counterfeiting. This dissertation explores techniques utilizing layout and logic-aware obfuscation. Collectively, we present secure and cost-effective solutions to address crucial hardware security problems.

DOI

https://doi.org/10.7275/24565324

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS