Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier

https://orcid.org/0000-0001-6139-9981

AccessType

Open Access Dissertation

Document Type

dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Chemistry

Year Degree Awarded

2022

Month Degree Awarded

February

First Advisor

Trisha L. Andrew

Subject Categories

Materials Chemistry

Abstract

Wearable electronics are a valuable tool to increase consumer access to real-time and long-term health care monitoring. The development of these technologies can also lead to major advancements in the field, such as self-charging systems that are completely removed from the electrical grid. However, much of the wearable technology available commercially contain rigid components, use unsustainable synthetic methods, or undesirable materials. The field has thus been moving towards wearables that mimic textiles or use textiles as a substrate. Herein, we discuss the use of oxidative chemical vapor deposition (oCVD) to produce textiles coated with poly(3,4-ethylenedioxythiophene) known as PEDOT-Cl. We evaluate the thermoelectric, thermoresistive, and hygroresistive properties of these PEDOT-Cl fabrics. We also explore the applications of these properties by creating humidity sensors, temperature sensors, and thermoelectric generators integrated with clothing. In general, we discuss the process of designing a wearable to best accommodate the desired application.

DOI

https://doi.org/10.7275/27310634

Share

COinS