Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier



Open Access Dissertation

Document Type


Degree Name

Doctor of Philosophy (PhD)

Degree Program

Civil and Environmental Engineering

Year Degree Awarded


Month Degree Awarded


First Advisor

Dr. Song Gao

Second Advisor

Dr. Michael Knodler

Third Advisor

Dr. Eric Gonzales

Fourth Advisor

Dr. Hari Balasubramanian

Subject Categories

Engineering | Transportation Engineering


Poor performance of the transportation systems has many detrimental effects such as higher travel times, increased travel costs, higher energy consumption, and greenhouse gas emissions, etc. This thesis optimizes the transportation systems by addressing the traffic congestion problem and climate change impact resulting from the inefficient operation of these systems.

I first focus on the key player of the transportation systems e.g., human being/traveler, and model travelers' route choice behavior with real-time information. In this study, I define looking-ahead behavior in route choice as a traveler's taking into account future diversion possibilities enabled by real-time information in a network with random travel times. Subjects participated in route-choice experiments in a driving simulator as well a PC-based environment. Three types of maps in increasing levels of complexity and information availability are used. Aggregate data analysis shows that network complexity negatively affects subjects' ratio of choosing the risky route given an experiment environment. Higher cognitive load in the driving simulator results in a higher level of risk aversion than in the PC-based environment for the simplest map. I specify and estimate a mixed logit model with two latent classes, looking-ahead and myopic, taking into account the panel effect. The estimated latent class membership function suggests that some subjects can look ahead while others are myopic in making their route choices, and drivers learn to look ahead over time. The experiment environment plays a role in the risk attitude of myopic subjects. A bias against information is found for subjects who look ahead, however, is not significant among myopic subjects.

I then shift my focus to influencing the travel patterns of individual travelers to reduce the energy and environmental impacts of the transportation sector. I present the system optimization (SO) framework of Tripod, an integrated bi-level transportation management system aimed at maximizing energy savings of the multi-modal transportation systems. From the user's perspective, Tripod is a smartphone app, accessed before performing trips. The app proposes a series of alternatives each with an amount of tokens which the user can later redeem for goods or services. The role of SO is to compute the optimized set of tokens associated to the available alternatives, in order to minimize the system-wide energy consumption, under a limited token budget. I present a method to solve this complex optimization problem and describe the system architecture, the multimodal simulation-based optimization model and the heuristic method for the on-line computation of the optimized token allocation. I then present the framework with the simulation results.

Finally, I optimize the systems travel time by addressing the equity issue of congestion pricing. I propose an alternative approach to an equitable and Pareto-improving transportation systems based on cooperation among travelers assisted by defector penalty. Theoretical analysis shows the existence condition of the cooperative scheme for heterogeneous value of time (VOT) of travelers. I formulate a mathematical programming problem for the optimal cooperative scheme problem in a general network with Pareto-improving constraints and practical considerations on the length the cooperation cycle. I then conduct computational tests on a simple network and evaluate the solutions in terms of efficiency improvement (total system travel time) and equitability (Gini index).


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.