Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier



Open Access Dissertation

Document Type


Degree Name

Doctor of Philosophy (PhD)

Degree Program


Year Degree Awarded


Month Degree Awarded


First Advisor

Tom Weston

Second Advisor

Farshid Hajir

Third Advisor

Siman Wong

Subject Categories

Number Theory


For a cuspidal newform f of weight k at least 3 and a prime p of the associated number field Kf, the deformation problem for its associated mod p Galois representation is unobstructed for all primes outside some finite set. Previous results gave an explicit bound on this finite set for f of squarefree level; we modify this bound and remove the squarefree hypothesis. We also show that if the p-adic deformation problem for f is unobstructed, then f is not congruent mod p to a newform of lower level.


Included in

Number Theory Commons