Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier



Campus-Only Access for Five (5) Years

Document Type


Degree Name

Doctor of Philosophy (PhD)

Degree Program

Polymer Science and Engineering

Year Degree Awarded


Month Degree Awarded


First Advisor

Thomas P. Russell

Subject Categories

Polymer and Organic Materials | Structural Materials


This dissertation focuses on the nanoparticle self-assembly on the liquid/liquid interface and the nanomaterial modification on surface. The self-assembly of nanoparticles at the liquid/liquid interface was utilized to trap non-equilibrium morphology when the nanoparticles reach jamming state. The dynamics of jammed systems were further studied by X-ray photon correlation spectroscopy. For the surface part, the nanomaterials were modified on the electrodes to improve the performance of microbial electrosynthesis. Also, a novel and simple method was developed to prepare nanomaterials including nanoparticle surfactants and carbon nanotubes (CNTs).