Person:
Gutermuth, R.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Research Assistant Professor, Department of Astronomy
Last Name
Gutermuth
First Name
R.
Discipline
Astrophysics and Astronomy
Expertise
Introduction
Name

Search Results

Now showing 1 - 8 of 8
  • Publication
    The spatial distribution of star formation in the solar neighbourhood: do all stars form in dense clusters?
    (2010-01-01) Bressert, E.; Bastian, N.; Gutermuth, R.
    We present a global study of low-mass, young stellar object (YSO) surface densities (Σ) in nearby (<500 >pc) star-forming regions based on a comprehensive collection of Spitzer Space Telescope surveys. We show that the distribution of YSO surface densities in the solar neighbourhood is a smooth distribution, being adequately described by a lognormal function from a few to 103 YSOs pc−2, with a peak at ∼22 stars pc−2 and a dispersion of inline image. We do not find evidence for multiple discrete modes of star formation (e.g. clustered and distributed). Comparing the observed surface density distribution to previously reported surface density threshold definitions of clusters, we find that the fraction of stars in clusters is crucially dependent on the adopted definitions, ranging from 40 to 90 per cent. However, we find that only a low fraction (<26 per>cent) of stars are formed in dense environments where their formation/evolution (along with their circumstellar discs and/or planets) may be affected by the close proximity of their low-mass neighbours.
  • Publication
    SPITZER OBSERVATIONS OF THE λ ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS
    (2010-01-01) Hernández, Jesús; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.
    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (~5 Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M sun to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with "evolved disks" (with smaller excesses than optically thick disk systems), and "transitional disk" candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ~6% for K-type stars (RC – J < 2) to ~27% for stars with spectral-type M5 or later (RC – J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ~5 Myr.
  • Publication
    THE MASS DISTRIBUTION OF STARLESS AND PROTOSTELLAR CORES IN GOULD BELT CLOUDS
    (2010-01-01) Sadavoy, Sarah I.; Di Francesco, James; Bontemps, Sylvain; Megeath, S. Thomas; Rebull, Luisa M.; Allgaier, Erin; Carey, Sean; Gutermuth, Robert
    Using data from the SCUBA Legacy Catalogue (850 μm) and Spitzer Space Telescope (3.6-70 μm), we explore dense cores in the Ophiuchus, Taurus, Perseus, Serpens, and Orion molecular clouds. We develop a new method to discriminate submillimeter cores found by Submillimeter Common-User Bolometer Array (SCUBA) as starless or protostellar, using point source photometry from Spitzer wide field surveys. First, we identify infrared sources with red colors associated with embedded young stellar objects (YSOs). Second, we compare the positions of these YSO candidates to our submillimeter cores. With these identifications, we construct new, self-consistent starless and protostellar core mass functions (CMFs) for the five clouds. We find best-fit slopes to the high-mass end of the CMFs of –1.26 ± 0.20, –1.22 ± 0.06, –0.95 ± 0.20, and –1.67 ± 0.72 for Ophiuchus, Taurus, Perseus, and Orion, respectively. Broadly, these slopes are each consistent with the –1.35 power-law slope of the Salpeter initial mass function at higher masses, but suggest some differences. We examine a variety of trends between these CMF shapes and their parent cloud properties, potentially finding a correlation between the high-mass slope and core temperature. We also find a trend between core mass and effective size, but we are very limited by sensitivity. We make similar comparisons between core mass and size with visual extinction (for AV ≥ 3) and find no obvious trends. We also predict the numbers and mass distributions of cores that future surveys with SCUBA-2 may detect in each of these clouds.
  • Publication
    Spitzer Observations of the Lambda Orionis cluster I: the frequency of young debris disks at 5 Myr
    (2009-01-01) Hernandez, Jesus; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Stauffer, J.
    We present IRAC/MIPS Spitzer observations of intermediate-mass stars in the 5 Myr old Lambda Orionis cluster. In a representative sample of stars earlier than F5 (29 stars), we find a population of 9 stars with a varying degree of moderate 24um excess comparable to those produced by debris disks in older stellar groups. As expected in debris disks systems, those stars do not exhibit emission lines in their optical spectra. We also include in our study the star HD 245185, a known Herbig Ae object which displays excesses in all Spitzer bands and shows emission lines in its spectrum. We compare the disk population in the Lambda Orionis cluster with the disk census in other stellar groups studied using similar methods to detect and characterize their disks and spanning a range of ages from 3 Myr to 10 Myr. We find that for stellar groups of 5 Myr or older the observed disk frequency in intermediate mass stars (with spectral types from late B to early F) is higher than in low mass stars (with spectral types K and M). This is in contradiction with the observed trend for primordial disks evolution, in which stars with higher stellar masses dissipate their primordial disks faster. At 3 Myr the observed disk frequency in intermediate mass stars is still lower than for low mass stars indicating that second generation dusty disks start to dominate the disk population at 5 Myr for intermediate mass stars. This result agrees with recent models of evolution of solids in the region of the disk where icy objects form (>30 AU), which suggest that at 5-10 Myr collisions start to produce large amount of dust during the transition from runaway to oligarchic growth (reaching sizes of ~500 km) and then dust production peaks at 10-30 Myr, when objects reach their maximum sizes (>1000 km)
  • Publication
    The evolution of stellar structures in dwarf galaxies
    (2010-01-01) Bastian, N.; Weisz, D. R.; Skillman, E. D.; Mc Quinn, K. B.W.; Dolphin, A E.; Gutermuth, R. A
    We present a study of the variation of spatial structure of stellar populations within dwarf galaxies as a function of the population age. We use deep Hubble Space Telescope/Advanced Camera for Surveys imaging of nearby dwarf galaxies in order to resolve individual stars and create composite colour-magnitude diagrams (CMDs) for each galaxy. Using the obtained CMDs, we select Blue Helium Burning stars (BHeBs), which can be unambiguously age-dated by comparing the absolute magnitude of individual stars with stellar isochrones. Additionally, we select a very young (<10 >Myr) population of OB stars for a subset of the galaxies based on the tip of the young main-sequence. By selecting stars in different age ranges we can then study how the spatial distribution of these stars evolves with time. We find, in agreement with previous studies, that stars are born within galaxies with a high degree of substructure which is made up of a continuous distribution of clusters, groups and associations from parsec to hundreds of parsec scales. These structures disperse on timescales of tens to hundreds of Myr, which we quantify using the two-point correlation function and the Q-parameter developed by Cartwright & Whitworth (2004). On galactic scales, we can place lower limits on the time it takes to remove the original structure (i.e., structure survives for at least this long), tevo, which varies between ~100~Myr (NGC~2366) and ~350 Myr (DDO~165). This is similar to what we have found previously for the SMC (~80~Myr) and the LMC (~175 Myr). We do not find any strong correlations between tevo and the luminosity of the host galaxy.
  • Publication
    THE PROPERTIES OF X-RAY LUMINOUS YOUNG STELLAR OBJECTS IN THE NGC 1333 AND SERPENS EMBEDDED CLUSTERS
    (2010-01-01) Winston, E.; Megeath, S. T.; Wolk, S. J.; Spitzbart, B.; Gutermuth, R.
    We present new Chandra X-ray data of the NGC 1333 embedded cluster and combine these data with existing Chandra data, Spitzer photometry, and ground-based spectroscopy of both the NGC 1333 and Serpens cloud core clusters to perform a detailed study of the X-ray properties of two of the nearest embedded clusters to the Sun. We first present new, deeper observations of NGC 1333 with Chandra ACIS-I and combine these with existing Spitzer observations of the region. In NGC 1333, a total of 95 cluster members are detected in X-rays of which 54 were previously identified in the Spitzer data. Of the Spitzer-identified sources, we detected 23% of the Class I protostars, 53% of the flat-spectrum sources, 52% of the Class II, and 50% of the transition disk young stellar objects (YSOs). Forty-one Class III members of the cluster are identified, bringing the total identified YSO population to 178. The X-ray luminosity functions (XLFs) of the NGC 1333 and Serpens clusters are compared to each other and the Orion Nebula Cluster (ONC). Based on a comparison of the XLFs of the Serpens and NGC 1333 clusters to the previously published ONC, we obtain a new distance for the Serpens cluster of 360+22 –13 pc. Using our previously published spectral types, effective temperatures, and bolometric luminosities, we analyze the dependence of the X-ray emission on the measured stellar properties. The X-ray luminosity was found to depend on the calculated bolometric luminosity as in previous studies of other clusters. We examine the dependence of LX on stellar surface area and effective temperature, and find that LX depends primarily on the stellar surface area. In the NGC 1333 cluster, the Class III sources have a somewhat higher X-ray luminosity for a given surface area. We also find evidence in NGC 1333 for a jump in the X-ray luminosity between spectral types of M0 and K7, we speculate that this may result from the presence of radiative zones in the K-stars. The gas column density versus extinction in the NGC 1333 parental molecular cloud was examined using the hydrogen column density determined from the X-ray absorption to the embedded stars and the K-band extinction measured to those stars. In NGC 1333, we find NH = 0.89 ± 0.13 × 1022 AK , this is lower than expected of the standard interstellar medium but similar to that found previously in the Serpens cloud core.
  • Publication
    A SPITZER VIEW OF STAR FORMATION IN THE CYGNUS X NORTH COMPLEX
    (2010-01-01) Beerer, I. M.; Koenig, X. P.; Hora, J. L.; Gutermuth, R. A.
    We present new images and photometry of the massive star-forming complex Cygnus X obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. A combination of IRAC, MIPS, UKIRT Deep Infrared Sky Survey, and Two Micron All Sky Survey data are used to identify and classify young stellar objects (YSOs). Of the 8231 sources detected exhibiting infrared excess in Cygnus X North, 670 are classified as class I and 7249 are classified as class II. Using spectra from the FAST Spectrograph at the Fred L. Whipple Observatory and Hectospec on the MMT, we spectrally typed 536 sources in the Cygnus X complex to identify the massive stars. We find that YSOs tend to be grouped in the neighborhoods of massive B stars (spectral types B0 to B9). We present a minimal spanning tree analysis of clusters in two regions in Cygnus X North. The fraction of infrared excess sources that belong to clusters with ≥10 members is found to be 50%-70%. Most class II objects lie in dense clusters within blown out H II regions, while class I sources tend to reside in more filamentary structures along the bright-rimmed clouds, indicating possible triggered star formation.
  • Publication
    CIRCUMSTELLAR STRUCTURE AROUND EVOLVED STARS IN THE CYGNUS-X STAR FORMATION REGION
    (2010-01-01) Kraemer, Kathleen E.; Hora, Joseph L.; Egan, Michael P.; Adams, Joseph; Allen, Lori E.; Bontemps, Sylvain; Carey, Sean J.; Fazio, Giovanni G.; Gutermuth, Robert
    We present observations of newly discovered 24 micron circumstellar structures detected with the Multiband Imaging Photometer for Spitzer (MIPS) around three evolved stars in the Cygnus-X star forming region. One of the objects, BD+43 3710, has a bipolar nebula, possibly due to an outflow or a torus of material. A second, HBHA 4202-22, a Wolf-Rayet candidate, shows a circular shell of 24 micron emission suggestive of either a limb-brightened shell or disk seen face-on. No diffuse emission was detected around either of these two objects in the Spitzer 3.6-8 micron Infrared Array Camera (IRAC) bands. The third object is the luminous blue variable candidate G79.29+0.46. We resolved the previously known inner ring in all four IRAC bands. The 24 micron emission from the inner ring extends ~1.2 arcmin beyond the shorter wavelength emission, well beyond what can be attributed to the difference in resolutions between MIPS and IRAC. Additionally, we have discovered an outer ring of 24 micron emission, possibly due to an earlier episode of mass loss. For the two shell stars, we present the results of radiative transfer models, constraining the stellar and dust shell parameters. The shells are composed of amorphous carbon grains, plus polycyclic aromatic hydrocarbons in the case of G79.29+0.46. Both G79.29+0.46 and HBHA 4202-22 lie behind the main Cygnus-X cloud. Although G79.29+0.46 may simply be on the far side of the cloud, HBHA 4202-22 is unrelated to the Cygnus-X star formation region.