ScholarWorks@UMassAmherst
We are now able to accept submissions directly in ScholarWorks. For submissions that are not doctoral dissertations or masters theses, please log in with your NetID, click the + (plus) in to the top left corner, and select the Submit Research option.
Graduate students filing for February 2025 degrees: We are now accepting submissions directly to ScholarWorks. Directions for submissions can be found in this guide. Please email scholarworks@library.umass.edu if you have any questions.
Request forms are functional. If you do not receive a reply to a submitted request, please email scholarworks@library.umass.edu.
This site is still under construction, please see our ScholarWorks guide for updates.
Recent Submissions
Publication Module 13(2025)This module contains materials summarizing concepts reviewed in this course and other interesting GIS applications across fields.Publication Module 12(2025)This module contains materials on computational thinking concepts, and a guide for designing academic posters.Publication Publication Module 10(2025)This module contains materials on geostatistics concepts and practice, and a brief exercise reviewing module 8 concepts.Publication Towards Stable Biologics: Understanding Co-Excipient Effects on Hydrophobic Interactions and Solvent Network Integrity(2025)The formulation of biologics for increased shelf life stability is a complex task that depends on the chemical composition of both the active ingredient and any excipients in solution. A large number of unique excipients are typically required to stabilize biologics. However, it is not well-known how these excipient combinations influence biologics stability. To examine these formulations at the molecular level, we performed molecular dynamics simulations of arginine -- a widely used excipient with unique properties -- in solution both alone and with equimolar concentrations of lysine or glutamate. We studied the effects of these mixtures on a hydrophobic polymer model to isolate excipient mechanisms on hydrophobic interactions relevant in both protein folding and aggregation, crucial phenomena in biologics stability. We observed that arginine is the most effective single excipient in stabilizing hydrophobic polymer folding, and its effectiveness is augmented by lysine or glutamate addition. We decomposed the free energy of polymer folding/unfolding to identify that the key source of arginine-lysine and arginine-glutamate synergy is a reduction in destabilizing polymer-excipient interactions. We additionally applied principles from network theory to characterize the local solvent network embedding the hydrophobic polymer. Through this approach, we found arginine supports a more highly connected and stable local solvent network than in water, lysine, or glutamate solutions. These network properties are preserved when lysine or glutamate are added to arginine solutions. Taken together, our results highlight important molecular features in excipient solutions that establish the foundation for rational formulation design.
Communities in ScholarWorks
Select a community to browse its collections.