Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

https://orcid.org/0000-0002-0292-304X

Access Type

Open Access Thesis

Document Type

thesis

Embargo Period

3-1-2022

Degree Program

Electrical & Computer Engineering

Degree Type

Master of Science in Electrical and Computer Engineering (M.S.E.C.E.)

Year Degree Awarded

2021

Month Degree Awarded

September

Abstract

Metasurfaces are arrays of subwavelength meta-atoms that shape waves in a compact and planar form factor. During recent years, metasurfaces have gained a lot of attention due to their compact form factor, easy integration with other devices, multi functionality and straightforward fabrication using conventional CMOS techniques. To provide and evaluate an efficient metasurface, an optimized design, high resolution fabrication and accurate measurement is required. Analysis and design of metasurfaces require accurate methods for modeling their interactions with waves. Conventional modeling techniques assume that metasurfaces are locally periodic structures excited by plane waves, restricting their applicability to gradually varying metasurfaces that are illuminated with plane waves. In this work, we will first provide a novel technique that enables the development of accurate and general models for 1D metasurfaces. This approach can be easily extended to 2D metasurfaces. Due to the remarkable importance of accurate characterization of metasurfaces, we will provide a rigorous method to characterize 1D metasurfaces. Finally, we will provide an accurate approach to fabricate and characterize 2D metasrufaces.

DOI

https://doi.org/10.7275/24590103.0

First Advisor

Amir Arbabi

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Available for download on Tuesday, March 01, 2022

Share

COinS