Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.



Access Type

Open Access Thesis

Document Type


Degree Program

Electrical & Computer Engineering

Degree Type

Master of Science (M.S.)

Year Degree Awarded


Month Degree Awarded



One of the main challenges in delivering content over the Internet today is the absence of a centralized monitoring and control system [38]. Software Defined Networking has paved the way to provide a much needed control over network traffic. OpenFlow is now being standardized as part of the Open Networking Foundation, and Software Defined Exchanges (SDXes) provide a framework to use OpenFlow for multi-domain routing. Prototype deployments of Software Defined Exchanges have recently come into existence as a platform for Future Internet Architecture to eliminate the need for core routing technology used in today’s Internet. In this work, we look at how application delivery, in particular, Dynamic Adaptive Streaming over HTTP (DASH) and Nowcasting take advantage of a Software Defined Exchange. We compare unsophisticated controllers to more sophisticated ones which we call a ”load balancer” and find that implementing a good controller for inter-domain routing can result in better network utilization and application performance. We then design, develop and evaluate a prototype for a Content Distribution Network (CDN) that uses resources at SDXes to provide higher quality bitrates for a DASH client.


First Advisor

Michael Zink

Second Advisor

David Irwin

Third Advisor

Tilman Wolf