Using Small Molecule Absorbers to Create a Photothermal Wax Motor

Publication Date



Organic phase change materials are used in actuators like wax motors. The solid→liquid phase transition that drives expansion is commonly induced by resistive heating that requires an electrical connection. The use of light to generate a phase change provides a non-contact way to power wax motors. Here, it is demonstrated that small molecules can act as absorbers to enable a photoinduced solid→liquid melting transition in eicosane, a low molecular weight phase change material. Three different small molecule absorbers are utilized: (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), azobenzene (AZOB), and guaiazulene (GAZ). The GAZ/eicosane mixture is characterized in detail because its absorption extends out to 750 nm, opening up the possibility of using near-infrared diodes as the photon source. The GAZ/eicosane composite is incorporated into a commercial wax motor assembly and 532 nm laser light is used to lift up to 400 g. The temporal response, work and force output, and efficiency are measured, and no loss of lifting capability or degradation is observed after ten cycles of irradiation. The incorporation of small aromatic molecules with low-energy absorption features into phase change materials can provide a general way to make light powered wax motors.

Journal or Book Title