Date of Award


Document type


Access Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Food Science

First Advisor

JT Clayton

Subject Categories

Food Science


Because of the endangerment of life of the human beings due to the environmental pollution, a serious study of the pollution of the environment is most vital. Because of increasing surface water pollution there is great hazard of ground water pollution. About half the United States of America derives drinking water from aquifers and much of the projected demand is expected to be met from subsurface sources. Therefore, a study was needed to determine the process of ground water contamination due to nutrients, especially Nitrogen, its degree and Length and Time of Travel and factors inhibiting its flow through soil.

The present study was undertaken at the 'Pine Crest Duck Farm' at Sterling, Massachusetts, where the nature of the soil was Gravely Sandy Loam and Three unlined (from the side and bottom) waste stabilization ponds existed and there was a great danger of ground water contamination due to Nitrogen in the vicinity of ponds and further. In the field, observation wells were installed along the redial line and bi-monthly samples of water were taken to monitor the levels of B.O.D., Ammonium, Nitrate and Nitrite Nitrogen.

Since the Adsorption of the Nitrogen by the soil is great inhibitor in the movement of the Nitrogen through soil profiles, this study was undertaken to study the adsorptive capacity of the soil in 'Bench Tests' and to test the applicability and validity of various adsorption isotherms of nitrogen in the soil; to develop a dimensional model or prediction equation for the nitrogen in the soil under natural flow conditions by studying the effects of varying concentration and flow rates on the adsorptive capacity of the soil, based on the principles of similitude; to correlate adsorption values in bench and column tests; and to determine the length and time of travel of nitrogen through soil.

The soil from the Farm was obtained from a depth of six feet with enough care so that original structure was maintained. Adsorptive capacity of the soil was determined through series of 'Bench Tests' and 'Soil Adsorption Columns' in the laboratory under temperature controlled chambers. From the Bench Tests Adsorption values of the soil at various concentrations of Ammonium, Nitrate and Nitrite Nitrogen were determined and validity and applicability of Adsorption isotherms were confirmed.

To study the Adsorption Process under natural flow conditions 'Soil Adsorption Column Tests' were done by using never done before Dimensional Model Analysis of Factors affecting Adsorption and getting dimensionless numbers and further obtaining 'Break Through Curves' at different Concentration and flow rates and Adsorption Values were obtained for Ammonium Nitrogen and Nitrite Nitrogen. Finally, Component and Prediction Equations were obtained for Ammonium Nitrogen and Nitrate Nitrogen.

By knowing the Adsorption Values of the soil Length and Time of Travel of Ammonium and Nitrate Nitrogen through soil was calculated at various Concentration Levels. A mathematical Prediction Equation was also obtained between Bench and Column Tests and Length of Time of Travel, t predict the adsorption values under natural flow conditions by just performing less time consuming Bench Tests.

It was also found that under eqUilibrium Bench Test conditions and natural flow conditions, adsorption of Ammonium, Nitrate and Nitrite Nitrogen increased with increasing solution concentration and adsorption of Ammonium Nitrogen was considerably higher than Nitrate and Nitrite Nitrogen. It was further found that for solution concentrations of 20, 40, 60, 80 and 100 mgll Ammonium Nitrogen and nitrate nitrogen will travel one foot distance in 183 and 115 days; 168 and 111 days; 148 and 98 days; 145 and 81 days; 130 and 98 days; and 127 and 97 days respectively. It was determined that at the present time contamination of shallow water wells does not pose Nitrogen contamination problem and installation of these wells beyond 300 feet radial distance from the waste stabilization ponds was safe.


Included in

Food Science Commons