Publication Date

2009

Comments

This is the pre-published version harvested from ArXiv. The published version is located at http://www.math.ca/10.4153/CJM-2009-031-6

Abstract

We study the algebraic properties of Generalized Laguerre Polynomials for negative integral values of the parameter. For integers r,n≥0 , we conjecture that L(−1−n−r)n(x)=∑nj=0(n−j+rn−j)xj/j! is a \Q -irreducible polynomial whose Galois group contains the alternating group on n letters. That this is so for r=n was conjectured in the 1950's by Grosswald and proven recently by Filaseta and Trifonov. It follows from recent work of Hajir and Wong that the conjecture is true when r is large with respect to n≥5 . Here we verify it in three situations: i) when n is large with respect to r , ii) when r≤8 , and iii) when n≤4 . The main tool is the theory of p -adic Newton Polygons.

Pages

583-603

Volume

61

Issue

3

Journal Title

CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES