
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Masters Theses Dissertations and Theses 

November 2015 

Design and Implementation of a High Performance Network Design and Implementation of a High Performance Network 

Processor with Dynamic Workload Management Processor with Dynamic Workload Management 

Padmaja Duggisetty 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 

 Part of the Digital Communications and Networking Commons 

Recommended Citation Recommended Citation 
Duggisetty, Padmaja, "Design and Implementation of a High Performance Network Processor with 
Dynamic Workload Management" (2015). Masters Theses. 270. 
https://doi.org/10.7275/7502524 https://scholarworks.umass.edu/masters_theses_2/270 

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 











Figure 3.10. System Architecture of Multi-Core Network Processor on NetFPGA
10G

Figure 3.11. Processing context in network processor design in our prototype from
[18]

22



Figure 3.12. Processing Grid

3.2.3 Processing Grid

The Processing grid in our system consists of packet processor units connected

from left to right as shown in the Figure 3.12. This architecture enables us to scale

the system to multiple processors. A packet entering this grid is classified and the

processing steps are determined before hand. The packet also carries information

that determines its path among the processors and the operations to be performed

on it by different processors. The processing context switching is taken care by the

controller using the control packets.

3.3 Summary

This chapter introduces several concepts that are essential for understanding the

prototype system implemented in the current project. It also describes the system

architecture of the prototype.

23



CHAPTER 4

WORKLOAD MANAGEMENT

Over the years, network processors have transformed from a single core proces-

sor into a multi-core processor to meet the performance requirements of ever grow-

ing internet users and enormous amount of internet applications. To maximise the

throughput of a multi-core network processor in a dynamic workload environment, it

is essential to distribute the workload evenly across the cores. This helps in avoid-

ing overloading of one particular core while the others are less-loaded. In order to

achieve this, it is important to have a good load balancing algorithm implemented

on a multi/many-core network processor which can not only perform in a normal

or a static workload but also be able to prove its performance in a dynamic work-

load. The algorithm should hence be able to keep a track of the workload and be

able make changes in the resource allocation in a multi-core network processor at run

time. Though there are many load balancing algorithms already designed for such

scenarios in network processors, it is always important to customise an algorithm

and implement it on a custom platform and hence maximise its throughput. In this

chapter, the algorithm used to balance the workload among multiple cores in the

prototype system is described. The workload balancing algorithm designed for the

prototype is based on the task mapping and duplication algorithms described in [18].

The high-level system architecture of the prototype was explained in Chapter 3. In

the prototype, each of the processor core is pre-loaded with a certain set of tasks to be

able to switch the processing context at run-time. The main idea of the algorithm is

to maintain a resource allocation table and update it dynamically with the changing

24



traffic. The controller module would then consult the resource allocation table at

pre-defined intervals to re-allocate resources if it detects any over-loading of a core.

After the re-allocation of processing resources, the controller module updates a task

identifier table. The resource allocation table consists of the information regarding

the task running on a processor core and the ID associated with it, the expected

running time of a task on a core, utilisation of a core and workload on a core. The

resource allocation table and the task identifier table are shown in Figure 4.1. During

a cold boot of the prototype system, the table is preloaded from the values obtained

from offline profiling. We have a wide range of applications ranging from a simple

forwarding to complex packet processing applications like IPSec. Each application

has a run time different from each other which depends on the number of operations

to be performed on a packet. For example, a simple forwarding application does

not involve deep packet inspection where as certain security applications like IPSec

perform deep packet content inspection where service time is completely dependent

on the size of packet. For a given set of applications, we use offline profiling tools

to measure the time taken by an application to complete the processing on a packet.

This data is stored in the resource allocation table. In a dynamic workload, it is

difficult to predict the behaviour of the incoming traffic and hence it is difficult to

assign an application without knowing the utilisation of a core. Hence initially we

set the utilisation of all the cores constant at 1 which indicates full utilisation of the

core. As the traffic flows in, the utilisation of each core varies. The utilisation is then

updated in the resource allocation table.

4.1 Task Mapping and Duplication

We allocate the tasks to a processor core depending on the workload. When the

workload of a particular task is higher than the rest of the tasks, more number of

processor cores are allocated for that task. Hence the number of processor cores

25



Figure 4.1. Resource Allocation Table

allocated is directly proportional to the workload. Increasing the number of cores

decreases the utilisation of the cores and results in a lower workload for each of the

cores running that particular task. This means that there are more resources to

process packets waiting for a certain task to be performed on them and hence this

reduces packet wait times. If a processor core gets over-loaded, it is indicated by

an increase in the workload. Hence the task running on a particular processor core

is duplicated i.e., a core which is has a lower workload is chosen and the context is

switched to that particular task. Each task has a taskID and a fixed offset in the

instruction memory of a processing core. By task duplication, the workload reduces

since the task utilisation reduces.

26



CHAPTER 5

PROTOTYPE IMPLEMENTATION

In this chapter, we present the detailed system architecture of each of the modules

present in our prototype implemented on NetFPGA 10G.A block diagram depiction

of our prototype implementation is as shown in Figure 3.10. The subsequent sections

describe the various user-defined IP cores present in our prototype.

5.1 Input Arbiter

The function of input arbiter is to multiplex a number of input streams into one

output stream. In our system input arbiter merges the data from the four 10G MAC

interfaces in a round robin fashion. The 10G MAC interface is a 64-bit wide. A stream

width converter converts the 64-bit data into a 256-bit data out. In our system the

data width of the input arbiter at both the input and output of the module is 256-

bit. The input arbiter has an input buffer at each of the four inputs. A buffer is

implemented as a small fall through FIFO. The output of this module is fed into a

flow classifier module.

5.2 Flow Classifier

Flow classifier performs packet classification to be able to determine the services

to be performed on the packet. This module extracts the 5-tuple of each Ethernet

frame i.e., Source IP, Destination IP, Source port, Destination Port and Protocol

information associated with each frame. The extracted tuple is then used as an index

to perform a TCAM look up on a flow table which has the information regarding

27



Figure 5.1. Block Diagram of a Flow Classifier

the application to be performed on the packet. Each packet is then appended with a

32-bit control information header that contains information for each processor that

is traversed in the grid. The block diagram of the flow classifier is shown in Figure

5.1. This module also consists of a width converter and a byte reverse module.

5.2.1 Control Information Header

The structure of the 32-bit Control Information Header is as shown in the Figure

5.2. Given below is the description of the bits present in the header.

• Bits 0-10 represent the size of the packet. These are filled in by the flow classifier.

• Bits 11-18 represent the destination interface of the packet. These are filled in by

the flow classifier.

• Bits 19-26 represent the task information i.e., each application is represented by 2

bits. The maximum number of applications supported in this prototype are 4.

These are filled by the flow classifier.

• Bits 27-30 represent the routing information. This information indicates if a par-

ticular processor should process that packet or forward it to the next processor

in the gird. These bits are filled in by the controller module.

28



Figure 5.2. Packet Structure Of Control Information Header

• Bits 31-32 represent the row of the processing grid. This information indicates the

row of the processing grid to be taken by the packet. These bits are filled in by

the controller module.

5.2.2 Width Converter

This converter down sizes the AXIS stream width from 256-bit datapath to a 32-

bit data path. This is done to enable smooth functioning of the datapath interface

to processor cores since the AXIS bus interfaces of the processor cores are only 32-bit

wide. The output of this module is connected to a byte reverse module.

5.2.3 Byte Reverse

A byte reverse module is used to reverse the order of the bytes since the processor

core functions in big endian format and the network packets in the hardware flow in

to the modules in little endian format.

5.3 Mapper

The output of the flow classifier is fed to the Mapper. A packet with the control

information header appended is received by the Mapper. Mapper maps each of the

packet to its respective queue according to the processing to be performed on it.

There are as many queues as applications. The queue in which the packet needs to

be queued, is determined using a queue mapping table which consists of a queue ID

and an application ID. The application ID is used as the index to obtain the queue

ID.

29



Figure 5.3. High Level Architecture of a Processing Grid

5.4 Application Queues

Application Queues are a bunch of FIFO’s with each FIFO carrying the packets

waiting to be processed for a certain application. In our prototype, we support three

different applications and hence 3 queues. Mapper decides the queue to be taken by a

packet depending on the application. Packets from each of the application queue then

flow into the respective row of the processing grid indicated in the control information

header.

5.5 Processing Grid

The high level architecture of the processing grid implemented in our prototype is

as shown in the Figure 5.3. The packet processing units are connected in rows from

left to right through AXIS streaming interfaces. This architecture minimises the bus

interfaces required to connect all the cores but still be flexible.

30



Figure 5.4. Packet Processing Unit

5.5.1 Packet Processing Unit

The packet processing unit is shown in the Figure 5.4. This unit consists of a

processor core, dispatcher, clock converter and a round robin arbiter. Each of these

modules are explained in the subsequent sections.

5.5.1.1 Dispatcher

A dispatcher module decides if the packet is to be processed by that particular

processor core or a different core. If the packet needs to be processed by that particular

core it forwards the packet to a clock converter module, else it forwards the packet

to a packet bypass buffer.

5.5.1.2 Clock Converter

Clock converter is a combination of a dual clock FIFO and a synchronizer. The

IP cores and the processor cores function at two different frequencies. This created

the need for a clock converter to synchronize the data between the two different clock

frequencies i.e., processor cores functioning at 100 Mhz and IP cores functioning at

160 Mhz. This dual clock FIFO is designed as a way for two circuits operating in

different clock frequencies to communicate with each other. There is a read side and

31



Figure 5.5. Dual Clock FIFO with Static Memory

write side where data is stored into the internal memory of the FIFO using the write

side clock and then read from the internal memory using the read side clock. This

module is meant to be flexible, allowing to easily change the data width as well as

the size of the internal memory. A dual port SRAM is used for storage of the data

as it comes in.

The block diagram of the dual clock FIFO with a static memory is as shown in the

Figure 5.5. Read addresses are generated by the read pointer and write addresses by

the write pointer. The write-control and read-control blocks control operation during

write and read access. The full and empty status signals are generated by separate

flag logic. The output of this module is fed to a processor core.

5.5.1.3 Processor Core

The processor cores in the processing grid are implemented using Microblaze which

is a 32-bit soft-core processor provided by Xilinx. The streaming interfaces on Mi-

32


