Factors Influencing Shrubland Bird and Native Bee Communities in Forest Openings

Henry Patrick Roberts

University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Recommended Citation

Roberts, Henry Patrick, "Factors Influencing Shrubland Bird and Native Bee Communities in Forest Openings" (2017). Masters Theses, 482.
https://scholarworks.umass.edu/masters_theses_2/482

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
FACTORS INFLUENCING SHRUBLAND BIRD AND NATIVE BEE COMMUNITIES IN FOREST OPENINGS

A Thesis Presented

by

HENRY PATRICK ROBERTS

Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

February 2017

Environmental Conservation
FACTORS INFLUENCING SHRUBLAND BIRD AND NATIVE BEE COMMUNITIES IN FOREST OPENINGS

A Thesis Presented

by

HENRY PATRICK ROBERTS

Approved as to style and content by:

__
David I. King, Chair

__
Kevin McGarigal, Member

__
Bruce Byers, Member

__
Andrew Vitz, Consulting Member

__
Joan Milam, Consulting Member

__
Curtice Griffin, Department Head
Department of Environmental Conservation
DEDICATION

To my parents, Cianne and Hugh, who have always supported and encouraged my interests, and my wife, Maura, who has endured many long field seasons and brings me so much happiness.
ACKNOWLEDGMENTS

I would like to thank my advisor Dr. David I. King for this opportunity, providing incredible support throughout this entire process, and for taking a chance on hiring an inexperienced college graduate back in 2011. I would also like to thank Joan Milam, Dr. Kevin McGarigal, Dr. Bruce Byers, and Dr. Andrew Vitz for their guidance and insightful comments. Joan Milam identified the large majority of bees captured and provided essential guidance during planning and design stages. I am grateful to Aaron Hulsey, Evan Dalton, Jess Ruebesam, and Ashley Tardif for providing field assistance as well as Michael Akresh and Javan Bauder for providing analytical support. Sam Droege and Michael Veit were extremely helpful with bee identification. Primary funding for this project was provided by the USDA Natural Resources Conservation Service. Additional funding was provided by the USDA Forest Service Northern Research Unit. The Massachusetts Department of Conservation and Recreation and Harvard Forest provided access to field sites.
ABSTRACT

FACTORS INFLUENCING SHRUBLAND BIRD AND NATIVE BEE COMMUNITIES IN FOREST OPENINGS

FEBRUARY 2017

HENRY PATRICK ROBERTS, B.A., CARLETON COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David I. King

Once prevalent on the landscape, early-successional habitats are now increasingly threatened in the northeastern United States. As a result, many species that rely on or require habitats dominated by shrubs, young trees, grasses, and forbs have experienced precipitous population declines, leading many organizations to list shrubland habitats and constituent wildlife as a conservation priority. Even-aged forest management (e.g. clearcutting) has been shown to be an efficient and effective means for creating early-successional habitat for certain taxa such as shrubland birds, but it is unfeasible in many situations in southern New England due to public opinion and increased parcelization. Group selection harvests create shrubland conditions in the form of relatively small forest openings (< 1 ha); however, limited attention has been directed toward understanding the extent to which these methods contribute to conservation of early-successional species. In order to assess the conservation value of small forest openings for wildlife in southern New England, I studied two distinct communities associated with early-successional habitats,
shrubland birds and bees (Hymenoptera: Apiformes), in openings created by group selection harvests and patch-cutting.

In 2014 and 2015, birds were surveyed in small forest openings in western Massachusetts in an effort to describe relationships between species occurrence and patch area as well as other microhabitat-, patch-, and landscape-level variables. Black-and-white warblers, common yellowthroats, chestnut-sided warblers, eastern towhees, and gray catbirds were likely to be present in openings at least 0.3 ha in size, while indigo buntings and prairie warblers had minimum area requirements of 0.55 and 1.07 ha, respectively. Variables within microhabitat-, patch-, and landscape-levels were important for predicting species occurrence. Most notably, prairie warblers were more likely to occur in openings closer to large patches of habitat such as powerline corridors, even if those openings were small in size. I conclude that, despite their inability to support the entire community of shrubland birds in this region, small forest openings can provide habitat for several species of conservation concern if proper attention is given to promoting suitable microhabitat, patch, and landscape characteristics.

Bees were sampled in openings as well as adjacent mature forest in an effort to describe the bee community, identify environmental variables influencing bee abundance and diversity, and examine the extent to which openings created by forest management may support bees, as well as potentially augment bee populations within adjacent unmanaged forest. Bees were significantly more abundant and diverse in forest openings than mature forest, but species composition was indistinguishable between openings and forest. Abundance and diversity displayed no relationship with opening size in either openings or forest, but were generally positively related to the amount of early-successional habitat on the landscape. Vegetation characteristics within openings were important in shaping bee
communities in openings, with abundance and diversity decreasing with vegetation height and increasing with floral abundance. Notably, eusocial, soft-wood-nesting, and small bees exhibited the opposite pattern in adjacent forest, increasing with the succession of openings and decreasing with greater floral abundance within openings. These results suggest that the creation of small forest openings may help to promote bees both in openings and adjacent mature forest, but certain guilds may be negatively affected.
TABLE OF CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT .. vi

LIST OF TABLES ... xi

LIST OF FIGURES ... xii

CHAPTER

1. SHRUBLAND BIRD OCCURRENCE IN FOREST OPENINGS .. 1

 1.1 Introduction ... 1

 1.2 Methods ... 4

 1.2.1 Study Area and Site Selection .. 4

 1.2.2 Bird and Microhabitat Surveys ... 5

 1.2.3 Patch and Landscape Metrics .. 6

 1.2.4 Statistical Analysis ... 7

 1.3 Results ... 10

 1.4 Discussion .. 12

 1.5 Conclusions ... 19

2. BEE COMMUNITY RESPONSES TO UNEVEN-AGED FOREST MANAGEMENT 34
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Parameter estimates and associated standard error values (in parentheses) of state covariates for occupancy models of bird occurrence with ΔQAICc \leq 2</td>
<td>21</td>
</tr>
<tr>
<td>2.</td>
<td>Forest opening areas (ha) at which the probability of occurrence equaled 0.5 (minimum) and 0.9 (optimal) for each species that showed a significant relationship with area</td>
<td>25</td>
</tr>
<tr>
<td>3.</td>
<td>Parameter estimates for fixed-effect variables in generalized linear mixed models of abundance and Shannon's Diversity Index (SDI) of bees in forest openings</td>
<td>54</td>
</tr>
<tr>
<td>4.</td>
<td>Parameter estimates for fixed-effect variables in generalized linear mixed models of abundance and Shannon's Diversity Index (SDI) of bees in mature forest</td>
<td>55</td>
</tr>
<tr>
<td>5.</td>
<td>Results of species habitat associations using generalized linear mixed models</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Northern region of the Quabbin Reservoir in western Massachusetts (42.46°N, -72.32° W)</td>
<td>26</td>
</tr>
<tr>
<td>2.</td>
<td>Occupancy model predictions demonstrating relationships between occurrence and patch area</td>
<td>27</td>
</tr>
<tr>
<td>3.</td>
<td>Occupancy model predictions demonstrating the relationship between gray catbird occurrence and the amount of shrubland habitat on the landscape</td>
<td>28</td>
</tr>
<tr>
<td>4.</td>
<td>Occupancy model predictions demonstrating relationships between prairie warbler occurrence and the distance to the nearest large patch of shrubland habitat (> 5 ha) for different forest opening sizes</td>
<td>29</td>
</tr>
<tr>
<td>5.</td>
<td>Occupancy model predictions demonstrating relationships between American restart (AMRE; 2015), chestnut-sided warbler (CSWA; 2014), and eastern towhee (EATO; 2015) occurrence and percent broadleaf vegetation</td>
<td>30</td>
</tr>
<tr>
<td>6.</td>
<td>Occupancy model predictions demonstrating relationships between American restart (AMRE; 2015) and gray catbird (GRCA; 2014) occurrence and vegetation height</td>
<td>31</td>
</tr>
<tr>
<td>7.</td>
<td>Occupancy model predictions demonstrating relationships between gray catbird (GRCA) occurrence and the coefficient of variation of vegetation height</td>
<td>32</td>
</tr>
<tr>
<td>8.</td>
<td>Occupancy model predictions demonstrating relationship between black-and-white warbler occurrence and Shape Index</td>
<td>33</td>
</tr>
<tr>
<td>9.</td>
<td>Northern region of the Quabbin Reservoir in western Massachusetts (42.46°N, -72.32° W)</td>
<td>58</td>
</tr>
<tr>
<td>10.</td>
<td>Bee sampling scheme applied to all forest openings. Sample points consisted of three bee bowls placed on the ground < 1 m apart</td>
<td>59</td>
</tr>
<tr>
<td>11.</td>
<td>Bee abundance and diversity per transect in openings and mature forest. Bars represent standard error</td>
<td>60</td>
</tr>
</tbody>
</table>
12. Non-metric multidimensional scaling ordination of opening and forest transects with raw (A) and binary (B) community data................................. 61

13. Bee abundance and Shannon’s diversity index in openings in relation to the percent of the surrounding landscape that was early-successional habitat within 500 m (PLAND500).. 62

14. Bee abundance and Shannon’s diversity index in openings in relation to the median vegetation height... 63

15. Bee diversity (Shannon’s diversity index) in openings in relation to the coefficient of variation of vegetation height.. 64

16. Bee abundance and Shannon’s diversity index in openings in relation to the floral abundance.. 65
CHAPTER 1

SHRUBLAND BIRD OCCURRENCE IN FOREST OPENINGS

1.1 Introduction

Many bird species that breed in early-successional shrubland habitats are currently experiencing severe population declines in eastern North America (Askins 1993, Hagan 1993, Hunter et al. 2001). These negative trends are in part attributed to the loss of required early-successional disturbance-dependent habitats (Litvaitis 1993, Askins 2001, Thompson and Degraaf 2001, King and Schlossberg 2014), which have primarily declined in response to the return of mature forest (Foster et al. 2002). Declines of early-successional habitat are estimated at approximately 2.5% per year and are currently near historic lows across much of the northeastern United States (King and Schlossberg 2014). Disturbances such as windthrow, wildfire, beaver (*Castor canadensis*) activity, and flooding, which once naturally sustained these ephemeral habitats (Brawn et al. 2001, Lorimer 2001, Lorimer and White 2003), have largely been suppressed by humans (DeStefano and Deblinger 2005, Spetich et al. 2011). As a result, maintaining disturbance-dependent early-successional habitats is now considered a conservation priority in the northeastern United States (Askins 2001, Oehler et al. 2006, King and Schlossberg 2014).

In an effort to simulate the effect of natural disturbances on the landscape, land-managing agencies and organizations have implemented anthropogenic disturbance strategies such as prescribed fires, mowing, and silvicultural methods. Schlossberg and King (2015) recently assessed the extent and origin of shrubland habitats in Massachusetts, finding that about 20% of all shrublands can be attributed to government or nongovernmental organization land management practices. This suggests that anthropogenic
efforts to create and maintain early-successional habitats are of considerable importance. Developing a better understanding of how these management strategies influence wildlife distributions and dynamics will greatly benefit efforts to effectively conserve this habitat.

Recent research indicates that mechanically treated wildlife openings provide high quality habitat for a wide range of shrubland bird species (Chandler et al. 2009a, King et al. 2009a, Smetzer et al. 2014) and may be more effective than traditional silvicultural practices for certain species (Smetzer et al. 2014). However, land treatments associated with wildlife openings can be labor-intensive and expensive (Thompson and DeGraaf 2001, Oehler 2003), making widespread use of wildlife openings impractical. Silvicultural practices have been advocated for creating early-successional habitat not only because they are effective in promoting many shrubland species (DeGraaf and Yamasaki 2003), but also because costs can be offset by timber revenue.

Timber harvesting currently plays an important role in supporting shrubland bird populations, creating about 78% of the early-successional forest habitat in New England (King and Schlossberg 2012). Several studies indicate that clearcutting is the most effective silvicultural approach for creating shrubland bird habitat (e.g. Annand and Thompson 1997, Costello et al. 2000, King and DeGraaf 2000). In recent years, however, harvest methods in New England have shifted toward uneven-aged approaches (Trani et al. 2001) in response to negative public reaction to even-aged management, particularly clearcutting (Gobster 2001). Additionally, the parcel size of most forest owners in southern New England has been decreasing (Butler et al. 2007), and clearcutting is not practical on smaller properties. Of uneven-aged-practices, only group selection, where multiple adjacent trees are removed from a mature forest matrix (Smith et al. 1997), creates shrubland habitat suitable in structure for shrubland birds. However, patches created by group selection (typically < 1.0
ha) are too small to support more area-sensitive shrubland bird species (Costello et al. 2000, Alterman et al. 2005). Nevertheless, small forest openings still provide potential breeding habitat for species less sensitive to patch area that are of regional concern, and it is possible that group selection could enable managers to contribute to bird conservation on sites where creating large patches of early-successional forest habitat is not practical. The precise area thresholds for these species have not been established, and thus the conservation value of forest openings too small to support complete shrubland bird communities remains poorly understood.

Although for forest birds the importance of landscape characteristics is well documented (Robinson et al. 1995, Howell et al. 2000, etc), landscape effects have been given less attention with respect to shrubland birds, despite being considered potentially important (Schlossberg and King 2007). Of the studies that have evaluated landscape-level effects on shrubland birds, the results are inconsistent. Some have found significant relationships between abundance and landscape composition, but have reported conflicting results for certain species (Hagan et al. 1997, Lichstein et al. 2002), while others have shown limited relationships with composition (Chandler et al. 2009b, Askins et al. 2007), or none at all (Chandler 2006). Research also has indicated that large patches of shrubland may increase the value of smaller, adjacent patches of similar habitat (Buffum and McKinney 2014). While not in complete agreement, the existing research shows that landscape conditions may influence patch suitability for many shrubland-obligate species and highlights the need for more detailed information to support the development of management guidelines.

The goal of this study was to investigate the potential for forest openings < 1.5 ha in size to support shrubland birds. Objectives were to (1) identify species-specific minimum-
area requirements for shrubland birds capable of occupying these openings, and (2) identify additional microhabitat-, patch-, and landscape-level factors that can promote occupancy of small forest openings.

1.2 Methods

1.2.1 Study Area and Site Selection

This study was conducted during 2014 and 2015 in the heavily forested northern region of the Quabbin Reservation in western Massachusetts, USA (42.46°N, -72.32°W; Fig. 1) on Massachusetts Department of Conservation and Recreation and Harvard Forest land. The dominant forest type of this region is transitional hardwoods, consisting primarily of red maple (Acer rubrum), red oak (Quercus rubra), black birch (Betula lenta), American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), and white pine (Pinus strobus). Forest openings in this study were created by group selection harvests, with the exception of two openings, which were the product of harvests where only a single opening was created. Forest openings contained seedlings and saplings of adjacent tree species, principally birches (Betula spp.), red maple, white pine, as well as Rubus spp., mountain laurel (Kalmia latifolia), and numerous fern species.

Study openings were randomly selected from a list of 146 forest openings present across 10 harvest sites (Fig. 1), 90 openings in 2014 and 104 in 2015. Openings ranged from 0.02–1.29 ha and had been harvested between 2006 and 2010. The number of forest openings within each stand ranged from one to 40 and varied in density. The nearest-neighbor distance for all openings at sites with more than one opening was ≤ 106 m with a mean of 43 m (sd = 18 m). To ensure openings represented the entire range of opening sizes, openings were chosen randomly from 4 bins representing different size ranges (0–
0.14 ha, 0.15–0.27 ha, 0.28–0.49 ha, and ≥ 0.5 ha). Fourteen of the smallest openings were added in 2015 in addition to those sampled the previous year in order to fully capture the lower range in opening sizes.

1.2.2 Bird and Microhabitat Surveys

Birds were surveyed 3 times per year from late May to early July with 10-minute, 50-m radius point counts at the center of each opening (Ralph et al. 1995). Surveys commenced 15 minutes after sunrise and continued until 1100 hours. Surveys were only conducted on days with little wind and no precipitation. To minimize bias, sampling at each survey point occurred at different times of the morning. Surveys were typically separated by 7–10 days. Wind speed (Beaufort scale) and cloud cover were recorded before each survey. Location, sex, and detection method of all birds noted during point counts were recorded on scaled orthoimagery. Survey points were visited by at least two different technicians during each year in order to reduce observer bias (Ralph et al. 1995). Fly-overs and birds detected outside of the 50-m radius were not included in the analysis. Scaled orthoimagery helped observers accurately estimate bird distances.

Microhabitat characteristics relating to vegetation structure and composition were measured at 20 random locations within each opening using random bearings and distances (1–25 m) and starting from point count locations. I recorded species and maximum height of the plant species in contact with a 1.5-cm-diameter vertical pole within four height classes: 0-0.5 m, 0.5-1.4 m, 1.4-3.0 m, and > 3.0 m (Breeding Biology Research & Monitoring Database 1997). Mature trees within openings were rare and therefore were not accounted for.
1.2.3 Patch and Landscape Metrics

Two patch-level metrics, area and Shape Index (SHAPE), and two landscape-level metrics, the percentage of the surrounding landscape containing shrubland habitat (PLAND) and the distance to the nearest large patch of shrubland habitat, were measured for each opening. Area, SHAPE, and PLAND were calculated using FRAGSTATS, version 4 (McGarigal et al. 2012) and ArcGIS 10.2.1 (Environmental Systems Research Institute, Inc., Redlands, CA). To facilitate analysis in FRAGSTATS, shapefiles delineating shrubland habitat boundaries were first created using ArcGIS and then rasterized using a 3-m cell size. SHAPE quantifies patch shape complexity by dividing the perimeter of a patch by the minimum possible perimeter of a patch equal in area. This eliminates bias associated with using the perimeter-to-area ratio metric on patches that vary in size. I chose to examine patch shape in addition to area because there is evidence that it is an influential factor for shrubland birds (Weldon and Haddad 2005, Shake et al. 2012). PLAND was calculated using a specified search-radius from the centroid of each opening. Since the scale at which birds respond to their surroundings is largely unknown, PLAND was calculated at 100 m, 200 m, 300 m, 400 m, and 500 m scales. Given the number of openings at each harvest site, the distance between openings (mean = 43 m), and the fact that the landscape surrounding harvest sites was nearly entirely mature forest with very little shrubland habitat, scales > 500 m would have shown very little variation and thus were not examined. Three additional FRAGSTATS metrics (Proximity Index, Core Area, and Core Area Index) were initially considered for inclusion in models, but were dropped due to complications in calculating these variables. I measured the distance from each opening to the nearest large patch of shrubland habitat using ArcGIS. I defined "large patches" as any powerline corridor > 50 m wide or patches of shrubland habitat > 5.0 ha in area. Patches of this size are sufficiently
large enough to accommodate even the most area-sensitive birds in this area (King et al. 2009a, King et al. 2009b).

1.2.4 Statistical Analysis

Shrubland bird occupancy was related to environmental variables using single-season occupancy models that allow the incorporation of detection probability, which reduces bias associated with imperfect detection (Mackenzie et al. 2002, MacKenzie 2006). This framework uses replicated point counts to estimate detection probability (Thompson 2002). Single season occupancy models are valid under the assumption of closure where no immigration, emigration, and mortalities occur (Royle and Dorazio 2008). This assumption was considered fulfilled given territoriality and the relatively short amount of time allowed between replicate counts (≤ 10 days; Smetzer et al. 2014).

I restricted the analysis to males that were detected inside openings and to species that occurred in ≥ 10% of plots. Occupancy and detection probability were related to respective covariates using a logit link. Data from each year was modeled separately because not all sites were sampled in both years, and to assess the agreement of results across years. Collinearity was assessed and variables with $r > 0.5$ were considered closely correlated. Since patch area was of primary concern to this study, any variables that were closely correlated with area were removed, leading me to remove PLAND at the 100 m scale. I also removed variables describing the amount of forb, fern, and grass as well as needleleaf vegetation because they were correlated with the amount of broadleaf vegetation, which I hypothesized was likely more important for the majority of the species in this study. Measurements of PLAND for the 200 m, 300 m, 400 m and 500 m scales were highly correlated, but were retained because only the best predictive scale would eventually be chosen for each variable type. In order to promote model convergence, all continuous
variables were scaled with $\bar{x} = 0$ and $\sigma = 1$. The final set of predictor variables considered in models included percent broadleaf vegetation, median vegetation height, and coefficient of variation (CV) of vegetation height at the microhabitat level, patch area and SHAPE at the patch level, and distance to large patch and PLAND at the landscape level. Detection covariates included observer, date, time, wind speed, and cloud cover.

I employed an information-theoretic approach to determine best-performing model(s) (Burnham and Anderson 2002). I used Akaike’s information criterion (AIC) adjusted for over-dispersion and small sample sizes (QAICc) to compare models (Burnham and Anderson 2011). Prior to model selection, fit of the data was assessed by conducting a goodness-of-fit bootstrap (1,000 bootstraps) of models containing all detection and occupancy covariates for each species for each year (MacKenzie and Bailey 2004) using the AICcmodavg package (Mazerolle 2015) in the R software environment, version 3.1.1 (R Development Core Team 2016). Over-dispersion parameters ($\hat{\epsilon}$) were produced and used to inflate standard errors and influence the subsequent selection of models (MacKenzie and Bailey 2004). All species with $\hat{\epsilon} \leq 1.0$ were assigned a value of one (Mazerolle 2015).

To begin the model selection process, I first determined best detection covariates for predicting occupancy for each species, which were subsequently included in all candidate models. This was done by fitting all subsets of detection covariates while including as many occupancy variables as possible while still allowing models to converge. Detection covariates were retained if they were statistically significant at $P \leq 0.1$, in models with a ΔQAICc ≤ 2, and performing better than a null model with respect to QAICc.

Next, with detection covariates fixed in all models, and using the same selection criteria, I separately assessed the importance of predictor variables within microhabitat, patch, and landscape levels. This resulted in a collection of variables, which were then
combined into a final construction of models that included all levels. Since assessing the influence of area on shrubland birds was a primary objective, it was included in the final construction of models, even if it was not previously selected as important. In this way, patch area could still be subsequently excluded from the final models if it truly had no influence. Non-convergent models were removed and QAIC_c values and model weights (w_i) were recalculated. Distance to large patch was included in 2015 prairie warbler model construction post hoc, because of its potential relevance for management and to compare coefficients between years. I also attempted to include an interaction coefficient between opening area and distance to large patch for prairie warblers post hoc, but no models including this term would converge. I used the unmarked package (Fiske and Chandler 2011) to fit models and estimate parameters in the R software environment, version 3.1.1 (R Development Core Team 2016).

In the final assessment, occupancy covariates were considered supported if included in models with a ΔQAIC_c ≤ 2 and strongly supported if 95% confidence intervals (CI) of their coefficients did not include zero, following Chandler et al. (2009a). Species-variable relationships were illustrated by plotting weighted-average model predictions using Akaike weights (Burnham and Anderson 2002) across all models that included the focal variable while holding all other variables at their mean. To examine how the relationship between prairie warbler occurrence and distance to nearest large patch varied by patch size, I plotted this relationship while holding patch area constant at a range of sizes. I avoided model averaging parameter estimates because there are uncertainties about the most appropriate methods for averaging variable coefficients that are not included in all models (Burnham and Anderson 2002), parameter estimates are influenced by the total number of variables included in a model, and multicollinearity can influence the interpretation of parameters.
Following Shake et al. (2012), I calculated the “minimum-area requirement” and “optimal area” of each species by identifying the area at which weighted average probability of occurrence equaled 0.5 and 0.9 respectively. Although birds do occur within patches below their minimum-area requirements as defined using this procedure, since this value indicates the area below which occupancy is less than random, it has been adopted as a standard metric for quantifying area-sensitivity (Robbins 1989, Vickery 1994, Shake et al. 2012), which facilitates comparison among species and studies.

1.3 Results

In total, across three visits to each opening, 1,633 detections of 52 bird species were recorded in 2014 and 2,046 detections of 48 species were recorded in 2015 (Appendix A). The detected species included 16 of 41 species identified as core shrubland birds of New England by Schlossberg and King (2007). Seven of these species had sufficient sample sizes for analysis: black-and-white warbler (*Mniotilta varia*), common yellowthroat (*Geothlypis trichas*), chestnut-sided warbler (*Setophaga pensylvanica*), eastern towhee (*Pipilo erythrophthalmus*), gray catbird (*Dumetella carolinensis*), indigo bunting (*Passerina cyanea*), and prairie warbler (*S. discolor*). American redstart (*S. ruticilla*) and veery (*Catharus fuscens*), two species not commonly grouped with the shrubland bird community, were also included in the analysis because they were observed nesting and defending territories within openings. Sufficient sample sizes were only available for indigo bunting in 2014 and veery in 2015.

I found evidence of relationships between occupancy of study species and microhabitat-, patch-, and landscape-level variables (Table 1). Forest opening area appeared in top models ($\Delta QAIC_c \leq 2$) for all species in both years and was strongly supported in at least one year for all species except for the two non-core species, American
redstart and veery (Table 1). Of the seven species that showed a strong relationship with area (Fig. 2), black-and-white warbler, common yellowthroat, chestnut-sided warbler, eastern towhee, and gray catbird were capable occupying smaller openings, with minimum-area requirements of 0.3 ha or less and optimal areas of 0.51 ha or less compared to indigo bunting and prairie warbler, which exhibited greater area sensitivity, with minimum-area requirements of 0.55 ha and 1.07 ha respectively and optimal areas of 0.69 ha and 1.25 ha respectively (Table 2).

Gray catbirds and prairie warblers were the only species that showed strong relationships with PLAND variables (Table 1). Gray catbirds occurred more frequently in openings with more shrubland habitat in the surrounding landscape within 300 m in 2014 and within 200 m in 2015 (Fig. 3), while prairie warblers occurred less frequently in openings with more shrubland in the surrounding landscape within 500 m in both years (Table 1). Common yellowthroat and indigo bunting also showed negative relationships with PLAND at a 500 m scale, but these terms were not strongly supported and only occurred in one model for each species. American redstarts showed a strong positive relationship with distance to the nearest large patch of shrubland habitat. Chestnut-sided warbler, common yellowthroat, and gray catbird showed weak positive relationships with distance to the nearest large patch. Prairie warbler was the only species to show a negative relationship with distance to the nearest large patch, but this relationship was only strong in 2014 (Table 1). Prairie warblers also appeared more likely to occupy smaller openings if they were near larger patches (Fig. 4).

Chestnut-sided warblers showed a strong positive relationship with broadleaf vegetation, whereas American redstarts and eastern towhees displayed strong negative relationships (Fig. 5) and prairie warblers showed a weak negative relationship (Table 1). American redstarts and gray catbirds both displayed strong positive relationships with vegetation height (Fig. 6) while veerys showed a weak positive relationship. Weak negative relationships for vegetation height were
apparent in one model for both common yellowthroats and indigo buntings. Gray catbirds were the only species to show a significant relationship with CV of vegetation height (Fig. 7), occurring less frequently in openings with more variation in vegetative structure. Black-and-white warblers displayed a similar, but weak relationship with CV of vegetation height in one model. Black-and-white warblers displayed a strong negative relationship with patch shape (Fig. 8). Indigo buntings also responded negatively to shape, but this relationship was weak.

1.4 Discussion

Previous research has demonstrated that certain shrubland birds present in large patches are consistently absent from patches < 1 ha (Rodewald and Smith 1998, Robinson and Robinson 1999, Costello et al. 2000, Alterman et al. 2005, Tozer et al. 2010), but little progress has been made identifying the area thresholds below which species are not likely to occur. This information is important for conservation because without knowledge of how individual species respond to management practices we cannot fully understand the impact of management efforts. Shake et al. (2012) determined minimum-area requirements for prairie warbler and yellow-breasted chat (Icteria virens) in North Carolina and determined there were distinct thresholds in patch area use for these species. I have supplemented the efforts of Shake et al. (2012) with results for prairie warblers in a different region of the United States and have also included other species that occur in smaller openings in order to provide information on the utility of these smaller openings for bird conservation. This study is the first to systematically sample a fine gradient of patch sizes small enough to determine both occupancy thresholds for species with less restrictive area requirements as well as the value of these smaller openings for conserving more area-sensitive shrubland birds.
The finding that prairie warbler, chestnut-sided warbler, common yellowthroat, black-and-white warbler, eastern towhee, indigo bunting, and gray catbird were positively associated with patch area is consistent with the findings of others (Annand and Thompson 1997, Rodewald and Smith 1998, Costello et al. 2000, Moorman and Guynn 2001, King and Degraaf 2004). My finding that indigo buntings were only likely to occur in openings larger than 0.55 ha contrasts with other studies that frequently reported indigo buntings in openings smaller than 0.55 ha (Kerpez 1994, Robinson and Robinson 1999, Moorman and Guynn 2001). This difference might be explained by the minimal forb cover in openings in this study, which has been positively related to indigo bunting abundance (King et al. 2009a, Smetzer 2014) and was the dominant vegetation type in at least one of these studies (Moorman and Guynn 2001). Because forb coverage was low in most openings in this study, indigo buntings may have only been able to occupy larger openings with a greater breadth of resources. Prairie warblers were the most area-sensitive species that occurred frequently enough in openings to be modeled, with an estimated minimum-area requirement of 1.07 ha. This estimate is nearly identical to that by Shake et al. (2012) in North Carolina as well as the suggested 1.1 ha opening size in Virginia by Kerpez (1994). Such consistency of estimated area requirements throughout the prairie warbler range suggests that my results are generalizable beyond this study area.

Group selection opening sizes can substantially influence both the composition and structure of regenerating vegetation (Smith et al. 1997), thus a plausible explanation for the apparent area-sensitivity of species that I observed could be that smaller openings simply foster unsuitable vegetative conditions below each species’ respective threshold. However, if this were the case, vegetation variables should have played a more prominent and consistent role in the models than they did. An alternative explanation, provided by Askins et al. (2007), suggests that the primary factor determining area-sensitivity is a species’
territory size and whether it can fit within a given opening. Lending some general support to this idea, prairie warblers, which were the most area-sensitive species in this study, appear to have larger territories on average than the species that I identified as less area-sensitive (DeGraaf and Yamasaki 2001). However, a lack of thorough quantitative estimates of territory size for these shrubland species makes it difficult to make definitive statements about the role of territories in species-specific patterns of area-sensitivity.

Patch area appeared in top models for American redstarts and veerys, but neither species displayed a strong relationship with area, and for American redstarts occupancy appeared to be driven more by microhabitat-level characteristics. Contrary to their common designation as mature forest species, some studies have noted that American redstarts and veerys will readily utilize early-successional habitat (Degraaf 1991, King and Degraaf 2000) or even prefer it (Hunt 1996). These species may primarily respond to understory conditions regardless of whether there is mature tree canopy present, which is in contrast with early-successional shrubland species that mostly require sparse or open canopy (Smetzer et al. 2014).

Very little attention has been given to how proximity of large shrubland patches influences shrubland birds in smaller adjacent patches. Although Buffum and McKinney (2014) did not specifically examine distance to large patches as an independent variable, they found that the size of adjacent wetland shrub patches within 50 m increased occupancy of five species in small patches of upland shrubland in Rhode Island. Similarly, I observed that prairie warblers occurred more frequently in openings closer to large patches of shrubland, indicating that shrubland habitats may be enhanced with proximity to large upland shrublands, in addition to wetland shrublands. Furthermore, prairie warblers were capable of occupying openings considerably smaller than their standard territory size.
(typically > 1.0 ha [Nolan 1978, DeGraaf and Yamasaki 2001]), if the opening was located close to a large patch. For example, a technician found the nest of a mated pair occupying a 0.22 ha opening approximately 60 m from a powerline right-of-way. If prairie warblers confined their territories to shrubland habitat within forest openings, it suggests that the species may have flexible territory sizes; however, more research is needed to determine whether or not this species will incorporate mature forest within territories. These findings illustrate the importance of landscape context in determining shrubland bird communities.

Occupancy by American redstarts increased with increasing distance to the nearest large patch of shrubland habitat, which directly contrasts with previous research that has suggested American redstarts are more abundant both within (Hunt 1996) and in proximity to (King et al. 1997; Hagan and Meehan 2002) early-successional habitats. Given these findings, I believe it is unlikely that birds of this species are in fact avoiding large patches of habitat. Instead, since the vast majority of American redstarts occurred at only two sites that were located several km away from any large patches of shrubland habitat, I suggest that a separate unmeasured environmental variable may have been driving occurrence at these sites, thus giving the perception that they were responding to the distance to large patches.

Landscapes that contain a higher proportion of shrubland habitat may be favored by shrubland birds for several reasons including conspecific attraction (Ward and Schlossberg 2004), availability of breeding sites to choose from during settlement (Badyaev et al. 1996), increased possibilities for within-breeding-season dispersal (Schlossberg and King 2007), and perhaps increased potential for extra-pair copulations (e.g. Byers et al. 2004). Landscape composition has been shown by other studies to be important for several of the species in this study (Hagan et al. 1997, Hagan and Meehan 2002, Lichstein et al. 2002);
however, I found that only two species, gray catbirds and prairie warblers, were strongly associated with the amount of early-successional habitat in the landscape. Gray catbirds responded positively to the extent of shrubland habitat on the landscape, which is consistent with findings of Hagan et al. (1997). However, Askins et al. (2007) found that gray catbirds did not appear to respond to the amount of early-successional habitat on the landscape. This discrepancy may be due to the fact that residential areas, which Askins et al. (2007) found increased gray catbird abundance nearby, were absent from the study area of Hagan et al. (1997).

My finding that prairie warbler occupancy decreased with more shrubland habitat in the landscape was unexpected in light of prior reports that this species prefers larger openings and my own finding that this species was more likely to occur closer to large patches of shrubland. While area and the amount of shrubland within 500 m were not correlated enough to exclude from the modeling process, their negative correlation was statistically significant ($r = -0.42, P = < 0.001$). Therefore, one explanation for this pattern is that the apparent negative relationship with the amount of shrubland on the landscape in the models may be a product of there being less shrubland surrounding larger openings, which are more likely to attract prairie warblers (Shake et al. 2012). Furthermore, the shrubland that surrounded most openings was in the form of small patches that typically will not host prairie warblers when not in proximity of large patches of habitat (83% of openings across all sites were smaller than half the size of the estimated minimum area requirement for prairie warblers in this study — 1.07 ha), thus in this group selection system, more shrubland on the landscape may not necessarily have the same positive effect for prairie warblers as it might for species that will readily occur in smaller openings.
Avoidance of edges and increased predation rates near edges is well documented for shrubland birds (King and Byers 2002, Rodewald and Vitz 2005, Schlossberg and King 2008, Shake et al. 2011), thus shape complexity, which increases the amount of edge bordering a patch, has been speculated as a restrictive factor for shrubland birds. In this study, only black-and-white warblers indicated a strong sensitivity to shape. Other studies have examined the influence of patch shape (Chandler et al. 2009b; Shake et al. 2012), but did not find significant effects of shape on species that also occurred in my study. The lack of shape effects for most species in this study might be due to the fact that edge effects appear to be less pronounced in contiguous mature forest landscapes (Driscoll and Donovan 2004). It is also possible that the patches in this study may not have encompassed a sufficient range in variation of shape complexity to properly examine this factor for all species.

Vegetation variables were important for most species, but did not always influence occupancy in the manner that was expected. Other studies have also reported positive relationships between chestnut-sided warbler and broadleaf cover (Schlossberg and King 2007, King et al. 2009a). King et al. (2009a) reported that eastern towhees were positively related to coniferous cover, which was negatively correlated with broadleaf cover in this study. I am unable to account for the negative relationship I observed between American redstarts and broadleaf cover, given their previously reported association with deciduous cover (Hunt 1996). Vegetation height is widely reported to affect bird abundance (Keller et al. 2003, Schlossberg and King 2009); however, only gray catbirds and American redstarts showed strong relationships with vegetation height in this study. This may have been due to the fact that study sites were all created within four years of each other and thus reflect relatively limited variation in vegetation height. Gray catbirds were significantly negatively associated with the CV of vegetation height, indicating these species occurred most frequently in openings with relatively uniform vegetative structure.
Forest openings in this study were occupied by birds of high conservation concern. Eight of the nine focal species (black-and-white warbler, common yellowthroat, chestnut-sided warbler, eastern towhee, indigo bunting, prairie warbler, American redstart, and veery) are experiencing significant regional population declines (Sauer et al. 2014). In addition, prairie warbler is listed as species of continental conservation concern in the Partners in Flight North American Landbird Conservation Plan (Rosenberg et al. 2016). Therefore, while unable to support the full early-successional bird community, openings as small as 0.3 ha can still provide habitat for at least five shrubland species, four of which are of conservation concern. This is particularly relevant to conservation because a large proportion of forested parcels in southern New England can support openings 0.3 ha in size (Butler et al. 2007), early-successional habitats have been shown to be beneficial for mature forest breeding birds (Küng et al. 2006; Streby et al. 2011), and openings of this size are less likely to raise public opposition.

The clustered nature of openings in this study added clear limitations to the extent to which I was able to analyze certain factors. For example, although there was variation in the amount of shrubland habitat surrounding openings, there were very few openings that were completely isolated. Moreover, most of the more isolated openings were larger, making it difficult to examine occupancy in very small isolated openings. Small and isolated anthropogenic openings are too scarce to study because there is no silvicultural prescription that results in single, small openings. Furthermore, the limitations of small openings have been communicated to managers (Buffum and McKinney 2014). Therefore, though I was unable to properly address the lower range of isolation for small openings, it is unlikely that this information would be useful for land managers because small, isolated openings are not practical as a silvicultural prescription or a wildlife management strategy.
Another limitation was the focus on occurrence data, which is not necessarily indicative of habitat quality (Brawn and Robinson 1996). Nevertheless, I did locate nests in many openings, including some of the smallest in the study, although I did not have sufficient resources to monitor them for nesting success. Thus, I am confident birds were at least able to acquire mates in even the smallest openings. Although some studies report increased predation near edges (Suarez et al. 1997, Weldon and Haddad 2005, Shake et al. 2011), shrubland birds are able to nest successfully in group selection cuts in extensively forested landscapes in the Northeast (King and DeGraaf 2004), and appear to nest with similar success in group selection openings and clearcuts (King et al. 2001, Alterman et al. 2005).

1.5 Conclusions

The results of this study have important implications for the management of shrubland birds. In situations where the goal is to accommodate the full suite of shrubland species, land managers should consider creating openings at least 1.25 ha in size to maximize the probability of occurrence for the most area-sensitive species in this study, however openings as small as 1.1 ha are still likely to support these species. If these sizes are not feasible operationally, openings 0.3 ha in size or greater can still provide habitat for species of high conservation concern. The “minimum” patch size for prairie warblers was similar between my study and studies in North Carolina and Virginia, suggesting these guidelines may be applicable throughout a large portion of the range of this species. Managers should also consider placing openings near preexisting large patches such as clearcuts > 5 ha in size or powerline corridors that are at least 50 m wide. This will increase the probability of prairie warbler occurrence and thus maximize conservation value of
management efforts while also minimizing monetary expenses associated with habitat creation.
Table 1. Parameter estimates and associated standard error values (in parentheses) of state covariates for occupancy models of bird occurrence with ΔQAIc\leq 2. State covariates include: broadleaf cover (Broad), vegetation height (Height), coefficient of variation of vegetation height (CV), patch area (Area), shape complexity (Shape), distance to nearest large patch of shrubland habitat (Distance), and amount of shrubland habitat on the landscape at 200 m, 300 m, 400 m, and 500 m scales (PL200, PL300, PL400, PL500). Species include: American redstart (AMRE), common yellowthroat (COYE), chestnut-sided warbler (CSWA), eastern towhee (EATO), gray catbird (GRCA), prairie warbler (PRAW), black-and-white warbler (BAWW), indigo bunting (INBU), and veery (VEER). Coefficients in bold indicate that confidence intervals did not include zero. Data comes from surveys conducted in forest openings in 2014 and 2015 in western Massachusetts, USA.

<table>
<thead>
<tr>
<th>Species</th>
<th>Year</th>
<th>Microhabitat</th>
<th>Patch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Broad</td>
<td>Height</td>
</tr>
<tr>
<td>AMRE</td>
<td>2014</td>
<td>4.68 (1.52)</td>
<td>4.99 (1.59)</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>-1.21 (0.54)</td>
<td>4.78 (1.29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.4 (0.62)</td>
<td>4.41 (1.21)</td>
</tr>
<tr>
<td>COYE</td>
<td>2014</td>
<td></td>
<td>1.43 (0.77)</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td></td>
<td>15.01 (4.38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.25 (0.293)</td>
</tr>
<tr>
<td>CSWA</td>
<td>2014</td>
<td>1.2 (0.39)</td>
<td>1.17 (0.39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.16 (0.39)</td>
<td>2.71 (1.87)</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td></td>
<td>21.3 (7.77)</td>
</tr>
<tr>
<td>EATO</td>
<td>2014</td>
<td></td>
<td>7.09 (10.5)</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>-0.91 (0.42)</td>
<td></td>
</tr>
<tr>
<td>GRCA</td>
<td>2014</td>
<td>4.41 (1.77)</td>
<td>-1.05 (0.52)</td>
</tr>
<tr>
<td>Species</td>
<td>Year</td>
<td>Landscape</td>
<td>Δ QAICc</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>AMRE</td>
<td>2014</td>
<td>PL200</td>
<td>1.71 (0.56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL300</td>
<td>1.58 (0.56)</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>PL400</td>
<td>2.23 (0.63)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL500</td>
<td>2.51 (0.69)</td>
</tr>
<tr>
<td>COYE</td>
<td>2014</td>
<td>PL200</td>
<td>0.65 (0.43)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL300</td>
<td>0.65 (0.43)</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td></td>
<td>2015</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>CSWA</td>
<td>0.93 (0.5)</td>
<td>0.90</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td></td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.55</td>
<td>-0.54 (0.42)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSWA</td>
<td>0.90</td>
<td>0.26</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td></td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.55</td>
<td>0.00</td>
</tr>
<tr>
<td>EATO</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td></td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GRCA</td>
<td>2.09 (0.84)</td>
<td>0.00</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>1.97 (0.82)</td>
<td>1.91</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td></td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>1.45 (0.68)</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>1.35 (0.69)</td>
<td></td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>0.51 (0.36)</td>
<td>1.36 (0.62)</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>0.56 (0.4)</td>
<td>1.34 (0.65)</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>0.56 (0.34)</td>
<td></td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>-6.93 (2.72)</td>
<td>-1.49 (0.72)</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>-2.92 (1.95)</td>
<td>-2.14 (1.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.58 (2.2)</td>
<td>-1.39 (0.79)</td>
</tr>
<tr>
<td>BAWW</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.84</td>
</tr>
<tr>
<td>INBU</td>
<td>0.00</td>
<td>0.36</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.97 (0.87)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
</tr>
</tbody>
</table>

23
Table 2. Forest opening areas (ha) at which the probability of occurrence equaled 0.5 (minimum) and 0.9 (optimal) for each species that showed a significant relationship with area. Estimates are included for years that area was a strong predictor. See Table 1 for species codes. Data comes from surveys conducted in forest openings in 2014 and 2015 in western Massachusetts, USA.

<table>
<thead>
<tr>
<th>Species</th>
<th>Year</th>
<th>Forest Opening Area</th>
<th>Minimum</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSWA</td>
<td>2015</td>
<td>0.05</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>COYE</td>
<td>2015</td>
<td>0.08</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>BAWW</td>
<td>2015</td>
<td>0.13</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>EATO</td>
<td>2015</td>
<td>0.13</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>GRCA</td>
<td>2014</td>
<td>0.16</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>GRCA</td>
<td>2015</td>
<td>0.30</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>INBU</td>
<td>2014</td>
<td>0.55</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>PRAW</td>
<td>2014</td>
<td>1.07</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Northern region of the Quabbin Reservoir in western Massachusetts (42.46°N, -72.32° W). Black stars indicate harvest sites where bird and vegetation sampling took place.
Figure 2. Occupancy model predictions demonstrating relationships between occurrence and patch area. See Table 1 for species codes. Data is only shown for species and years for which patch area was a strong predictor. Patch area was strong for gray catbird in both years, but only 2015 data is shown. Confidence intervals are excluded for better visualization.
Figure 3. Occupancy model predictions demonstrating the relationship between gray catbird occurrence and the amount of shrubland habitat on the landscape. The scale that was most predictive of occurrence varied by year (300 m in 2014 and 200 m in 2015). Data comes from surveys conducted in forest openings in western Massachusetts, USA.
Figure 4. Occupancy model predictions demonstrating relationships between prairie warbler occurrence and the distance to the nearest large patch of shrubland habitat (> 5 ha) for different forest opening sizes (ha). Data is only shown for 2014 in which distance was a strong predictor. Confidence intervals are excluded for better visualization. Data comes from surveys conducted in forest openings in western Massachusetts, USA.
Figure 5. Occupancy model predictions demonstrating relationships between American restart (AMRE; 2015), chestnut-sided warbler (CSWA; 2014), and eastern towhee (EATO; 2015) occurrence and percent broadleaf vegetation. Data is only shown for species and years in which broadleaf vegetation was a strong predictor. Data comes from surveys conducted in forest openings in western Massachusetts, USA.
Figure 6. Occupancy model predictions demonstrating relationships between American restart (AMRE; 2015) and gray catbird (GRCA; 2014) occurrence and vegetation height. Data is only shown for species and years in which vegetation height was a strong predictor. Data comes from surveys conducted in forest openings in western Massachusetts, USA.
Figure 7. Occupancy model predictions demonstrating relationships between gray catbird (GRCA) occurrence and the coefficient of variation of vegetation height. Data is only shown for species and models in which coefficient of variation of vegetation height was a strong predictor. Data comes from surveys conducted in forest openings in 2014 and 2015 in western Massachusetts, USA.
Figure 8. Occupancy model predictions demonstrating relationship between black-and-white warbler occurrence and Shape Index. Data is only shown for 2015 in which distance was a strong predictor. Data comes from surveys conducted in forest openings in western Massachusetts, USA.
CHAPTER 2

BEE COMMUNITY RESPONSES TO UNEVEN-AGED FOREST MANAGEMENT

2.1 Introduction

Pollinators are a vital component of ecosystems, providing critical services for reproduction to the large majority of the world's flowering plants (Kearns et al. 1998). Pollinators also provide substantial ecosystem services to humans by pollinating approximately one third of plant-based food crops (Klein et al. 2007). Recent efforts to examine pollinator population trends have identified widespread pollinator declines (Biesmeijer et al. 2006, Potts et al. 2010, Bartomeus et al. 2013, Koh et al. 2016). While these trends cannot be attributed to a single cause, anthropogenic disturbance of pollinator habitats has been identified as a major contributing factor (Aizen and Feinsinger 2003, Goulson et al. 2008, Potts et al. 2010).

Of all the taxa that serve as pollinators, bees (Hymenoptera: Apiformes) are the most effective at carrying out this critical ecological role (Winfree 2010). Although a substantial proportion of North America's food crops are pollinated by introduced honeybees (Apis mellifera), the continent hosts over 4,000 species of native bees (Cane and Tepedino 2001), which contribute significantly to crop pollination (Klein et al. 2003, Winfree et al. 2007a). Recent evidence of declines of wild bee populations present a potential threat to ecosystem services on which both biodiversity (Ollerton et al. 2011) and humans depend (Winfree et al. 2008).

In a broad-scale meta-analysis, Winfree et al. (2009) synthesized the existing literature that addressed the impact of human disturbances on bees. Although overall their analysis indicated a significant negative effect of human disturbances on bee abundance, the
influence of disturbance on bees differed by disturbance type, with grazing, fire, agriculture
and logging actually exerting a positive (albeit non-significant) influence on bee abundance
(Winfree et al. 2009). This variation among human land use practices suggests additional
research is needed to fully understand how human activities impact these ecologically and
economically important species. Furthermore, understanding whether forest management
can promote local bee populations could provide guidance to restoring pollination services
to forested landscapes, the lack of which has been implicated in the decline of some forest
plant species (Willis et al. 2008).

One form of disturbance that appeared to be positively related to bee abundance in
the analysis by Winfree et al. (2009) was logging. Logging is a dominant form of disturbance
within the northeastern region of the United States and is responsible for roughly 78% of
eyear-successional habitats in New England (King and Schlossberg 2012). Since many
pollinators have traditionally been thought to prefer open, year-successional habitats
(Michener 2007, Winfree et al. 2011), logging activities may benefit bee populations.
Studies of pollinators in even-aged silvicultural treatments such as clearcuts report high
abundance and diversity of native bees in comparison to late-successional habitats (Taki et
al. 2013, Wilson et al. 2014, Hanula et al. 2015). Stands managed with uneven-aged single-
tree selection support more bees than unmanaged stands (Nol et al. 2006), but host fewer
bees and lower diversity compared to even-aged systems (Romey et al. 2007). Furthermore,
Proctor et al. (2006) found that group selection harvests supported significantly more bees
than mature forests and suggested it was more effective at promoting bees than single-tree
selection.

Given the fact that silviculture is the dominant disturbance agent of forests across
much of the northeastern United States and that there is reason to believe it will positively
influence bee populations, a better understanding of how bees respond to a range of uneven-aged silvicultural practices, both in recently-logged and adjacent habitats, will contribute to our ability to conserve and manage these key pollinators. This study was undertaken to evaluate the response of bees to forest management. I focused specifically on group selection harvesting because larger openings created by even-aged management have been more thoroughly studied (Taki et al. 2013, Wilson et al. 2014, Rubene 2015) and single-tree selection is reported to support few bees (Romey et al. 2007) and is thus not likely a viable silvicultural approach for promoting bee populations.

The objectives of this study were to (1) compare the bee community within forest openings to that of adjacent mature forest to directly illustrate the impact of silviculture on bee communities relative to reference forest conditions, (2) identify microhabitat-, patch-, and landscape-level factors influencing bee abundance and diversity in both openings and adjacent forest, since bees are known to respond to the environment at different scales (Diaz-Forero et al. 2013), (3) quantify bee abundance and diversity at a range of distances from forest openings to gauge the potential for openings to augment bee populations in adjacent mature forest, and (4) examine the habitat associations of individual species.

2.2 Methods

2.2.1 Study Area

This study was conducted in 2014 and 2015 on lands managed by the Massachusetts Department of Conservation and Recreation land in western Massachusetts, USA (42.46°N, -72.32°W; Fig. 9). The major land cover type in this region is mature forest characterized as hardwoods-white pine and primarily made up of red maple (Acer rubrum), red oak (Quercus rubra), black birch (Betula lenta), American beech (Fagus grandifolia),
eastern hemlock (*Tsuga canadensis*), and white pine (*Pinus strobus*). Human development comprised < 5% of the immediate landscape when this study was conducted. Forest openings in this study ranged in size from 0.08–1.29 ha and were created by group selection harvests conducted between four and eight years prior to sampling. Vegetation within openings consisted primarily of birches (*Betula* spp.), red maple, white pine, as well as *Rubus* spp., mountain laurel (*Kalmia latifolia*), and various fern species. Residual woody debris from harvests was prevalent in all openings.

2.2.2 Bee and Vegetation Surveys

Thirty openings were randomly selected for sampling across six harvest sites using bins based on opening size to ensure that a gradient of sizes were included. Sampling took place during three periods, spring (April 26–May 14), summer (July 1–July 17), and late summer (August 23–September 8). Bees were collected using bowl traps, which consisted of 96 milliliter plastic cups (Solo®, Highland Park, IL) filled with water mixed with soap (blue Dawn® Liquid Dish Soap, original scent). To sample bees within openings, a transect of 5 sampling points 5 m apart was established in each opening 15 m from the forest and parallel to the opening edge (Fig. 10). To sample bees in forest, a second transect of 5 sample points 10 m apart was established starting 10 m from the opening and running perpendicular into the forest along east-west bearings to control for the effects of aspect (Matlack 1994). At each sampling point, three bowls, one white, one fluorescent yellow, and one fluorescent blue, were placed on the ground approximately 1 m apart. These colors have been shown to be most attractive to bees of eastern North America (Campbell and Hanula 2007). Sampling was only conducted on sunny, calm days when the average temperature was > 10° C. Forest transects were always placed such that surrounding sources of shrubland habitat were never closer to points along the transect than the focal
opening. After 24 hours, bowls were collected and bees removed from bowl traps and stored in 70% ethyl alcohol. Bees were later cleaned, blown dry, pinned, labeled, and identified to species using online keys such as Discoverlife.org (Ascher and Pickering 2016) and published references (e.g. Mitchell 1960, 1962). Bees with uncertain identities were sent out to specialists Sam Droege and Michael Veit for confirmation.

Vegetation was measured at 20 random locations within each opening. At each point, I placed a 3 m pole vertically and recorded the identity and height of the tallest plant species in contact with the pole or a vertical projection of the pole, if vegetation was taller than 3 m. Median and coefficient of variation of vegetation height were used in the analyses to characterize vegetation structure. The number of flowers within a 1-m radius of each sampling point were recorded by species during each visit. Absolute flower abundance yielded extremely heterogeneous data that were primarily representative of species (e.g. *Aralia hispida*) that produce compound flowers made up of dozens of very small flowers, which on an individual basis, have been shown to be less likely to attract pollinators to the same extent as larger flowers (Parachnowitsch and Kessler 2010). Flowering species richness was also not particularly descriptive of the floral community within openings because richness never exceeded three species for a single opening. To better describe the floral community within openings, I calculated the flowering species richness at each individual sampling point and summed those values for all five sample points in each transect. This new metric allowed me to coarsely account for abundance, while not overly representing plants that produce numerous but less conspicuous flowers. Although it does not represent true floral abundance, I refer to this metric as floral abundance from this point forward.
2.2.3 Patch and Landscape Metrics

The area of each opening and the percentage of the surrounding landscape containing shrubland habitat (PLAND) were quantified using FRAGSTATS software, version 4 (McGarigal et al. 2012). Area was chosen because there is a lack of consensus regarding the influence of patch size on bee communities (e.g. Donaldson et al. 2002 and Bommarco et al. 2010). PLAND was chosen because landscape composition has been shown to be important in determining bee communities (e.g. Winfree et al. 2007b), but few studies of bees have examined early-successional habitat at a landscape level (see Diaz-Forero et al. 2013 and Rubene et al. 2015). To calculate these variables, forest openings were first delineated using ArcGIS 10.2.1 (Environmental Systems Research Institute, Inc., Redlands, CA) and rasterized using a grid size of 3 m to facilitate analysis in FRAGSTATS. The PLAND metric represented the percent of the landscape that was shrubland habitat within a specified search-radius from the centroid of each opening. PLAND was measured using 200 m and 500 m radii because bee guilds have been shown to display varying responses to landscape features at different scales (Benjamin et al. 2014). A 200-m radius was used as a smaller scale because a 100-m radius was highly correlated with patch area. A 500-m radius was chosen to represent a larger scale because beyond this distance PLAND would have shown little variation in response to larger radii due to the size of the group selection harvests.

2.2.4 Statistical Analysis

Generalized linear mixed models (GLMM; Zuur et al. 2009) were the primary framework under which data were analyzed in this study. GLMMs were used to compare differences in bee abundance and diversity (Shannon’s Diversity Index) by habitat type, model abundance and diversity as a function of microhabitat, patch, and landscape
variables, model abundance and diversity in mature forest as a function of distance to
openings, and examine habitat associations of individual species. Predictor variables
included vegetation height, coefficient of variation (CV) of vegetation height, and floral
abundance at the microhabitat level, opening area at the patch level, and the amount of
early-successional habitat within 200 m and 500 m (PLAND200 and PLAND500
respectively) at the landscape level. Using Akaike’s information criterion (AIC; Burnham
and Anderson 2002), poisson and negative binomial distributions were compared for
modeling abundance and gaussian and gamma distributions were compared for modeling
diversity. Zero-inflated models were also considered when dependent variables appeared to
have more zero values than would be expected under the distributions used (Zuur et al.
2009). Site was included as a random effect to account for variations in abundance and
diversity among sites. I modeled abundance using a log link and diversity using an identity
or inverse link depending upon the distribution. Bees caught at sample points were pooled
within transects for all community analyses except for that of the effect of distance to forest
openings for which individual sample points were used.

Overall bee abundance and diversity as well as individual species abundance was
modeled as a function of habitat by including a single categorical fixed effect representing
habitat type (opening or forest). Habitat associations were only modeled for species with >
30 individuals collected across both habitats. Relationships with microhabitat, patch, and
landscape variables were modeled for all species combined and by guild because bees vary
in behavior and how they interact with the environment (Cane et al. 2006; Williams et al.
2010; Wray et al. 2014). For this study I included the following guilds: dietary breadth
(broad or "polylectic" versus narrow or "oligolectic"), sociality (solitary, eusocial, or
parasitic), nest substrate (soil, cavity, soft wood, pith), and body size (small, medium, large).
Information about diet, sociality, and nesting substrate were gathered from primary
literature and personal communications with experts. I estimated body size by first measuring the intertegular length (Cane 1987) of at least 5 randomly selected bees of each species. Dry body mass was then estimated using the known exponential relationship with intertegular length established by Cane (1987). Bees were categorized as small if their estimated weight was < 4 mg, medium if their estimated weight was 4–16 mg, and large if their estimated weight was > 16 mg, in accordance with Winfree et al. (2007b). Unidentified species were included in analyses of abundance of all bees combined and certain guilds (if they could be clearly placed in a particular guild, e.g. *Nomada*), but excluded from analyses of diversity and body size.

Correlations among predictor variables were assessed using Pearson correlation. For all variable comparisons, r was ≤ 0.51. Continuous variables were scaled with \(\bar{x} = 0 \) and \(\sigma = 1 \) to facilitate model convergence. Scatterplots were used to examine the nature of relationships between dependent and independent variables. All relationships appeared linear, with the exception of PLAND500, which consistently demonstrated a unimodal pattern where abundance and diversity peaked at intermediate levels. To account for this potential non-linear relationship, I included a quadratic term in addition to a linear term in models containing this variable.

Since I had no *a priori* variable combinations of interest and there was a risk of over-fitting models if more variables were included (due to a small sample size of \(n = 30 \)), relationships were modeled using only a single fixed effect variable. Covariates were considered strongly supported if the 95% confidence interval for their coefficient did not overlap zero (Chandler et al. 2009). A sequential Bonferroni procedure (Holm 1979) was considered to account for the likelihood of a Type I error given the number of models applied to similar data; however, I did not use this method because I felt it was too
conservative and would exclude relationships that are biologically meaningful. Models were fit and parameters were estimated using the glmmADMB package (Skaug et al. 2015) in R statistical software version 3.1.1.

To visualize differences in community composition between opening and forest habitats, opening and forest samples were ordinated using nonmetric multidimensional scaling (NMDS; McGarigal et al. 2000). NMDS plots sample entities in low dimensional space such that the entity distance in the ordination has the same rank order as the original dissimilarity matrix (McGarigal et al. 2000). I used a Bray-Curtis measure of ecological distance. The fit of the ordination distances to the original data was assessed by calculating stress where values closer to zero indicate better fit. Because abundance was anticipated as a distinguishing factor between habitats, NMDS plots were created using a raw and binary dataset to assess community compositions with and without the influence of species abundance. NMDS was performed using the vegan package (Oksanen et al. 2013) in R statistical software version 3.1.1.

2.3 Results

In total, 3,316 bees representing 5 families, 15 genera, and 80 identifiable bee species were collected from forest openings and adjacent forest habitat (Appendix B). Approximately 9% of bees collected could not be identified to species (most of which were of the genera *Nomada* and *Lasioglossum*) due to a lack of information on taxonomy for certain groups of bees and the poor condition of specimens. Three exotic species (*Andrena wilkella*, *L. leucozonium*, and *Osmia cornifrons*), totaling 18 individuals, were collected. Nine species represented approximately 61% of all individuals. The two most common species were *N. maculata* (499 individuals) and *Augochlorella aurata* (402 individuals). The majority of identified bees were polylectic (96% of individuals) and soil-nesting (65% of
individuals) bees. Cavity, soft wood, and pith-nesting bees made up 14%, 11%, and 9% of bees that could be assigned nesting substrates, respectively. Solitary and eusocial bees represented roughly equal proportions (37% and 36% respectively), while kleptoparasitic bees made up the remaining 27%. When habitats were examined separately, guild proportions were similar. Oligolectic bees were uncommon with only 126 individuals (eight species) collected, of which 94 individuals were *A. uvulariae*, a species that specializes on the plant genus *Uvularia* (Appendix C; Fowler 2016). *Bombus perplexus* and *L. foxii* were the only species that only occurred in forest, but these were only represented by single individuals.

Bee abundance ($\beta = -1.478$, $SE = 0.172$, $z = -8.61$, $P = < 0.01$) and diversity ($\beta = -0.569$, $SE = 0.135$, $z = -4.22$, $P = < 0.01$) were significantly greater in openings than in adjacent forest (Fig. 11). NMDS ordinations appeared to show a separation of opening and forest communities when raw data was used, but there was no clear separation when ordinated using binary data (Fig. 12). Overall, opening points were more tightly clustered than forest points in ordination plots, indicating less variation in their community makeup (Fig. 12). Relatively low stress values for both raw and binary ordinations (0.19 and 0.2 respectively) and inspection of Shepard’s plots suggested acceptable fits. Bee abundance ($\beta = -0.012$, $SE = 0.007$, $z = -1.76$, $P = 0.08$) and species diversity ($\beta = -0.006$, $SE = 0.004$, $z = -1.52$, $P = 0.13$) in the forest showed no significant relationship with distance to forest opening, but appeared to trend downward with increasing distance from openings.

Bee abundance and diversity in openings was unrelated to patch area (Table 3). Abundance of parasitic, soil-nesting, soft-wood-nesting, and small bees was positively related to PLAND200. The quadratic term for PLAND500 was significant for all guilds except eusocial, pith-nesting, and medium size bees. Coefficients of the quadratic term of
PLAND500 were all negative, indicating a unimodal relationship with the dependent variables (Fig. 13). Abundance and diversity of all bees combined (Fig. 14) as well as polylectic, eusocial, solitary, cavity and pith-nesting, and medium size bees displayed significant negative relationships with vegetation height. Only diversity of all bees combined (Fig. 15) and soft-wood-nesting bees were positively related to CV of vegetation. Abundance and diversity of all bees combined (Fig. 16) as well as polylectic, eusocial, solitary, cavity and pith-nesting, and medium and large bees displayed positive relationships with floral abundance.

Patch area had no apparent influence on the abundance or diversity of bees within adjacent mature forest (Table 4). Abundance of all bees combined as well as polylectic, solitary, soil-nesting, and large bees exhibited a positive relationship with PLAND200. Abundance of all bees combined, as well as polylectic, oligolectic, solitary, parasitic, soil-nesting, and medium and large bees displayed positive relationships with the linear PLAND500 term. A negative quadratic term for PLAND500 was significant for abundance and diversity of all bees combined, as well as solitary, parasitic, and soil and cavity-nesting, and medium size bees. Abundance of eusocial, soft-wood-nesting, and small bees displayed positive relationships with the vegetation height within forest openings. CV of vegetation height within openings exhibited no apparent influence on any guild. Abundance of eusocial, soft-wood-nesting, and small bees displayed negative relationships with floral abundance within forest openings.

Seventeen bee species were abundant enough to compare between openings and mature forest (Table 5). Of these species, 11 were significantly more abundant in openings than mature forest including: *A. vicina*, *A. aurata*, *Ceratina calcarata*, *C. dupla*, *L. cressonii*, *L. ephialtum*, *L. taylorae*, *N. luteoloides*, *N. maculata*, *O. atriventris*, and *O. pumila*. Two species,
L. coeruleum and *L. versans* were more abundant in forest than in openings, but only *L. versans* was significantly more abundant. Additional species that did not show strong associations with a particular habitat type were *A. carlini*, *A. uvulariae*, *L. planatum*, *L. subviridatum*.

2.4 Discussion

My findings that bee abundance and diversity were far greater in forest openings compared to closed-canopy forest demonstrate these practices greatly increase native bee abundance and diversity, and is consistent with the findings of Proctor et al. (2012) in Ontario. This is of interest from a conservation standpoint because of evidence that at least some native bee species are undergoing population declines (Bartomeus et al. 2013), and habitat loss has been implicated as potential cause of these declines (Potts et al. 2010). In addition to their value as biodiversity, bees provide important pollination services for native plants, and loss of pollination services has been suggested as a potential cause of declines in native flora in many regions of the globe (Biesmeijer et al. 2006, Willis et al. 2008). The creation of habitat through plantings and the establishment of fallow fields is recommended by conservationists for supporting native pollinators (Vaughn et al. 2015). My results support the contention of Taki et al. (2013) who suggest that timber harvesting could be a potentially important tool for promoting bee populations and associated pollinator services.

In contrast to findings that most group selection openings are typically too small to support certain area-sensitive shrubland bird species (Costello et al. 2000, Schlossberg and King 2007), my observations suggest that bees are relatively insensitive to patch area. However, little consensus exists in the literature on bees and patch size, with some studies reporting positive relationships with patch area (Aizen and Feinsinger 1994, Meyer et al.
2007, Krauss et al. 2009, Bommarco et al. 2010, Díaz-Forero et al. 2013, Rubene et al. 2015), no relationships (Brosi et al. 2008), or mixed responses by guild (Donaldson et al. 2002, Cane et al. 2006, Neame et al. 2013). Ockinger et al. (2012) found that there was a significant effect of patch area on bee richness in grasslands; however, in agreement with my findings, when their analysis was restricted to patches within a forested matrix, the effect of patch area was no longer significant. Ockinger et al. (2012) did not suggest an explanation for this phenomenon, but their findings highlight the importance of considering matrix type when studying pollinators. Because the variety of resources (e.g. nectar, pollen, nest substrates, and nest-construction materials) necessary for bees to complete their life cycle (Muller et al. 2006) can often come from different habitats (Westrich 1996), opening size may not have influenced bee communities because the surrounding forest matrix was able to supplement resources in even the smallest openings and indeed, other studies of fragmented habitats have provided similar explanations (Brotons et al. 2003, Neame et al. 2013).

Landscape composition has been shown to be an important factor influencing bees (Dauber et al. 2003, Hirsch et al. 2003, Taki et al. 2007, Winfree et al. 2007b, Watson et al. 2011), but few studies have examined how the extent of early-successional forest habitat at the landscape level affects bees. I observed that all guilds, apart from eusocial, pith-nesting, and medium size bees, displayed unimodal relationships with the amount of early-successional habitat on the landscape within 500 m. These non-linear associations indicate that while early-successional habitat beyond the boundaries of the treatment area can increase abundance and diversity, there appears to be a threshold beyond which its influence subsides. Rubene et al. (2015) sampled bees in recently logged habitats while also considering the amount of early-successional habitat on the landscape, but found no relationship between species richness and the amount of early-successional habitat within
2 km. This discrepancy might be explained by differences in surrounding matrices (see Ockinger et al. 2012) or the differences in the scales examined. Research has shown that stretches of forest habitat are not effective barriers to certain eusocial (Kreyer et al. 2004) and solitary (Zurbuchen et al. 2010) bees. If this is also true for other bees and they were not restricted to single openings in this study, it is not surprising that abundance and diversity increased with greater early-successional cover because openings supported more abundant and diverse communities than adjacent forest (see section 2.3) and the scales examined (200 m and 500 m) are within the feasible foraging distance for many bees captured in this study (Gathmann and Tscharntke 2002). It is more difficult to explain the eventual subsidence of this effect. One hypothesis is that there may be a threshold at which local resources become abundant enough that movement among openings, especially those further away, is no longer necessary and as a result fewer bees visit each opening as the amount of early-successional habitat within 500 m becomes greater.

Similar to the potential value for natural habitats to supplement crop pollination (Ricketts et al. 2008, Klein et al. 2003, Benjamin et al. 2014), greater pollinator numbers in forest openings could promote pollination services in adjacent forest where bees are scarce. However, my results were somewhat equivocal on this point. On the one hand there was no indication that bee abundance or diversity along transects was elevated near openings, while on the other hand the landscape-level analysis showed that overall bee abundance and diversity in the forest increased with the amount of early-successional habitat on the landscape at both scales. The lack of an effect of distance to opening might be explained by the fact that the furthest sample point was only 50 m from openings, which is likely well below the foraging distance of most bees (Gathmann and Tscharntke 2002). Therefore, I may not have sampled far enough into the woods to measure a change in the bee community. Similarly, Jackson et al. (2014) failed to observe elevated bee abundance near
early-successional habitat along old logging roads. The positive relationship with early-
successional habitat that was found suggests that silviculture promotes pollinators in
adjacent forest and thus may translate to elevated pollinator services for flowering plants
associated with mature forest. It is critical to recognize, however, that abundance and
diversity followed a unimodal trend for the amount of early-successional habitat at 500 m
similar to that of bees within openings, indicating that extensive logging may not improve
pollinator services if the resulting early-successional cover is too great. Further attention
needs to be given to examining this relationship and identifying when the benefits of early-
successional habitat may diminish.

Evidence suggests that microhabitat characteristics are of considerable importance
in determining bee communities (Murray et al. 2012, Williams and Winfree 2013) and my
results were supportive of this. Bees in openings were generally positively related to floral
abundance, which is consistent with other studies (e.g. Potts et al. 2003, Roulston and
Goodell 2011, Torne-Noruera 2014). Guilds that showed no response to floral abundance
were oligolectic bees, kleptoparasitic bees, soil-nesting, soft-wood-nesting and small bees.
Oligoleges require certain types of pollen to provision their young (Roulston and Goodell
2011) and thus are more likely driven by the abundance of their host plants rather than the
broader floral community. Similarly, kleptoparasites should be more driven by their host
species (Sheffield et al. 2013) as opposed to the floral community, especially since they do
not provision young (Rozen 2001). Small-bodied bees may have been primarily driven by
the relative isolation of openings since body size is linked to shorter flight distances
(Gathmann and Tscharntke 2002, Greenleaf et al. 2007). It is difficult to explain why soft-
wood-nesting bees did not respond to floral abundance.
Abundance of eusocial and small bees in adjacent mature forest was negatively related to floral abundance in openings. Similarly, other studies have reported reduced density (Cartar 2005) and species richness (Diaz-Forero et al. 2013) of *Bombus* spp. near early-successional habitats. Both of these studies suggest that this phenomenon may be the result of bees prioritizing foraging efforts in young forest where there is elevated floral abundance. This pattern, and the increased abundance of eusocial, small, and soft-wood-nesting bees in mature forest with taller vegetation within openings show that microhabitat characteristics can directly influence not only the bee community within that opening, but also in surrounding habitat. These patterns also show that despite my expectation that high bee abundance in openings might lead to elevated abundance in adjacent forest and therefore augment pollination in those habitats, recently logged early-successional habitats may in fact have negative consequences for pollination services in adjacent forest. Indeed, Cartar (2005) suggested that early-successional forests may cause reduced pollination services to forest plants, while Diaz-Forero et al. (2013) postulated that young forests may be ecological traps for *Bombus* spp. because nests might be established in young forests that are resource-rich in early spring, but have fewer resources later in the year (in Estonia). In addition, Proctor et al. (2012) expressed concern that *Rubus*, a prolific flowering plant genus and aggressive colonizer of disturbed areas, may “monopolize” pollinators and negatively impact the reproductive success of neighboring forest plants. Future research should consider measuring reproductive success of forest plants to definitively assess the impact of logging.

My findings that all bees combined and many individual guilds were negatively associated with vegetation height supports the wide-spread belief that most bees prefer early-successional, open habitats (Michener 2007). Other studies have identified similar relationships (Gikungu 2006, Taki et al. 2013, Sudan 2016). This pattern is possibly the
result of factors associated with lower vegetation such as elevated light levels, which can stimulate the growth of flowering plants (Romey et al. 2007, Vallet et al. 2010) and improve nesting suitability for certain species (Potts and Wilmer 1997). This relationship between vegetation height and floral abundance is reflected by their correlation ($r = -0.51$, $P = < 0.01$).

Similarly, the observed increase in bee diversity and abundance of soft-wood-nesting bees with more varied vegetation height may also have been the product of associated factors such as light levels. However, CV of vegetation height did not appear to be related to floral abundance ($r = 0.16$, $P = 0.4$) or vegetation height ($r = -0.17$, $P = 0.36$), indicating that CV is likely driving other factors. To my knowledge CV has not been studied, but edge habitats, which typically represent a wide range in vegetative structure, have been shown to be important for bees (Sepp et al. 2004, Osborne et al. 2008, Diaz-Forero et al. 2013).

Although bees are often broadly lumped together as species of open habitats (Michener 2007), habitat requirements are largely unknown for many species and research has shown that some bees may in fact be associated with late-successional habitats (Winfree et al. 2007b, Taki et al. 2007). These analyses partly support this traditional line of thought, demonstrating clear preferences toward openings for certain species, but other species did not appear to utilize one habitat more than the other, and one species, *L. versans*, was more abundant in the forest ($P = 0.05$). In contrast, however, Proctor et al. (2012) captured the vast majority of *L. versans* in group selection openings, not mature forest. This difference could be due to the fact that my study probably sampled mature forest habitat that was closer to openings (although Proctor et al. [2012] did not specify how far unmanaged sites were from group selection openings) and thus the *L. versans* I captured in
the forest may have come from openings. This is further supported by the fact that *L. versans* is a soil-nesting species (Giles and Ascher 2006) and bare ground was far more abundant in openings than in the forest (personal observation).

Bee guilds differ with respect to their sensitivity to disturbance (Cane et al. 2006, Williams et al. 2010, Wray et al. 2014) and thus examining community makeup with respect to guilds can provide information as to the extent that group selection harvests contribute to bee conservation. For example, floral specialists (oligoleges) are of heightened conservation concern because they have been shown to be at greater risk of decline (Biesmeijer et al. 2006, Winfree et al. 2010). Although oligoleges typically represent a higher proportion (~30%) of species in temperate bee communities (Minckley and Roulston 2006), they comprised only 10% of the species and less than 4% of individuals collected in this study, suggesting that silvicultural openings do not contribute to promoting floral specialists as much as other habitats. Interestingly, despite the limited representation of specialists, I collected a notably large number of *A. uvulariae*, a specialist of *Uvularia* spp. While less abundant than both eusocial and solitary bees, kleptoparasitic bees were common both in mature forest and openings, making up approximately 27% of total captures and contributing the most frequently captured species (*N. maculata*). This may reflect the overall good health of the bee community, as suggested by Sheffield et al. (2013), who argued for the use of kleptoparasites as indicator taxa due to their stabilizing role in communities, their sensitivity to negative disturbances, and their inherent reflection of the presence of their host bee species.

It should be noted that although bowl traps avoid collector bias, which may affect samples collected by opportunistic netting techniques (Westphal et al. 2008), bowl traps tend to catch fewer large-bodied bees and fewer individuals of certain genera (Cane et al.
Nevertheless, I know of no reason to expect that the species not represented in my bowls would exhibit different patterns of abundance relative to habitat conditions than the species I was able to collect. There is also concern that bowl traps are potentially biased as a function of floral abundance, collecting fewer bees when resources are plentiful (Wilson et al. 2008, Baum and Wallen 2011). My observation of a positive relationship between bee captures in bowls and floral abundance suggests this source of bias was not influencing our sampling. Finally, my study did not encompass a complete gradient of landscape conditions, no openings were completely isolated, nor did any openings have more than 13% of the surrounding landscape within 500 m containing early-successional habitat. These limitations should be kept in mind when comparing the results of this study with results based on netting or other sampling techniques, and caution exercised when extrapolating these results to less forested landscapes.

2.5 Conclusions

Public and private conservation and management entities are receiving encouragement to create habitat for pollinators (Obama 2014), and plantings and pollinator gardens are recommended methods for achieving this goal (Vaughn et al. 2015). Although these methods are effective, there is a monetary cost associated with them, especially for creating them at a large spatial scale. This research demonstrates that forest management practices that create forest openings 0.08–1.29 ha within a landscape consisting of 3–13% early-successional habitat can promote native bee communities, not only within openings, but also in surrounding mature forest. Capture rates in openings in this study were lower than those of open meadow habitats dominated by perennial flowering plants (Gezon et al. 2015), nevertheless, the broad extent of silvicultural habitats in Massachusetts (Schlossberg
and King 2015) suggests that the aggregate contribution of silviculture to pollinator populations in the region may be significant.

These results suggest that it is the total proportion of the landscape converted to early-successional habitat rather than size of individual openings that is important, with approximately 5–10% of the landscape (within 500 m) as early-successional habitat optimal for bee abundance and diversity within a group selection harvest regime. Managers may be able to boost pollinator services to surrounding habitats with the strategic placement of young forest, but it is unclear whether creating openings will translate to increased pollination rates within adjacent forest because certain guilds may be drawn out of forests into openings, potentially depriving forest habitats of pollinator services.
Table 3. Parameter estimates for fixed-effect variables in generalized linear mixed models of abundance and Shannon's Diversity Index (SDI) of bees in forest openings. Standard errors are given in parentheses. Environmental variables include area of opening (Area), the amount of early-successional habitat within 200 m (PLAND200) and 500 m (PLAND500), a quadratic term for PLAND500 (PLAND500²), median vegetation height within openings (Height), the coefficient of variation of vegetation height (CV), and floral abundance (Flower). Groups analyzed include all bees combined, polylectic bees, oligolectic bees, eusocial bees, solitary bees, parasitic bees, soil-nesting bees (soil), soft-wood-nesting bees (soft wood), cavity-nesting bees (cavity), and pith-nesting bees, as well as small, medium and large bees. Models only included one fixed-effect variable, with the exception of models of PLAND500, which also included PLAND500². Coefficients were only shown if confidence intervals did not overlap zero. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.

<table>
<thead>
<tr>
<th>Group</th>
<th>Measure</th>
<th>Area</th>
<th>PLAND.200</th>
<th>PLAND.500</th>
<th>PLAND.500²</th>
<th>Height</th>
<th>CV</th>
<th>Flower</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Bees</td>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.224 (0.096)</td>
<td>-0.19 (0.097)</td>
<td>0.268 (0.092)</td>
</tr>
<tr>
<td></td>
<td>SDI</td>
<td></td>
<td>0.168 (0.079)</td>
<td>-0.169 (0.08)</td>
<td>-0.174 (0.074)</td>
<td>0.162 (0.076)</td>
<td>0.172 (0.074)</td>
<td></td>
</tr>
<tr>
<td>Polylectic</td>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.197 (0.1)</td>
<td>-0.203 (0.097)</td>
<td>0.273 (0.096)</td>
</tr>
<tr>
<td>Oligolectic</td>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.613 (0.186)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eusocial</td>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.306 (0.137)</td>
<td></td>
<td>0.410 (0.134)</td>
</tr>
<tr>
<td>Solitary</td>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.212 (0.097)</td>
<td>-0.324 (0.086)</td>
<td>0.337 (0.081)</td>
</tr>
<tr>
<td>Parasitic</td>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.364 (0.151)</td>
<td>-0.469 (0.176)</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.238 (0.116)</td>
<td>-0.306 (0.124)</td>
<td>0.267 (0.119)</td>
</tr>
<tr>
<td>Soft Wood</td>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.461 (0.211)</td>
<td>-0.458 (0.203)</td>
<td>0.355 (0.159)</td>
</tr>
</tbody>
</table>
Table 4. Parameter estimates for fixed-effect variables in generalized linear mixed models of abundance and Shannon’s Diversity Index (SDI) of bees in mature forest. Standard errors are included in parentheses. Environmental variables include area of opening (Area), the amount of early-successional habitat within 200 m (PLAND200) and 500 m (PLAND500), a quadratic term for PLAND500 (PLAND500^2), median vegetation height within openings (Height), the coefficient of variation of vegetation height within openings (CV), and floral abundance within openings (Flower). Groups analyzed include all bees combined, polylectic bees, oligolectic bees, eusocial bees, solitary bees, parasitic bees, soil-nesting bees (soil), soft-wood-nesting bees (soft wood), cavity-nesting bees (cavity), and pith-nesting bees, as well as small, medium and large bees. Models only included one fixed-effect variable, with the exception of models including PLAND500, which also included PLAND500^2. Coefficients were only displayed if confidence intervals did not overlap zero. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.

<table>
<thead>
<tr>
<th>Group</th>
<th>Measure</th>
<th>Area</th>
<th>PLAND.200</th>
<th>PLAND.500</th>
<th>PLAND.500^2</th>
<th>Height</th>
<th>CV</th>
<th>Flower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>Abundance</td>
<td></td>
<td>-0.257 (0.01)</td>
<td>-0.282 (0.103)</td>
<td>0.225 (0.103)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pith</td>
<td>Abundance</td>
<td></td>
<td></td>
<td>-0.725 (0.141)</td>
<td>0.627 (0.170)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>Abundance</td>
<td></td>
<td>0.315 (0.139)</td>
<td></td>
<td>-0.401 (0.151)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Abundance</td>
<td></td>
<td></td>
<td>-0.004 (0.001)</td>
<td>0.272 (0.084)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>Abundance</td>
<td></td>
<td>-0.638 (0.255)</td>
<td></td>
<td>0.395 (0.197)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Abundance</td>
<td>Eusocial</td>
<td>Solitary</td>
<td>Parasitic</td>
<td>Soil</td>
<td>Soft Wood</td>
<td>Cavity</td>
<td>Pith</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Abundance</td>
<td>0.462 (0.180)</td>
<td>0.483 (0.163)</td>
<td>0.484 (0.169)</td>
<td>0.375 (0.176)</td>
<td>0.666 (0.244)</td>
<td>-0.450 (0.227)</td>
<td>0.652 (0.276)</td>
</tr>
</tbody>
</table>
Table 5. Results of species habitat associations using generalized linear mixed models. A single fixed effect representing habitat type (opening or forest) and a random effect of site were included in all models. Negative β values indicate greater abundance in openings. Only species that occurred > 30 times were examined. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>β</th>
<th>SE</th>
<th>z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrena carlini</td>
<td>159</td>
<td>-0.674</td>
<td>0.395</td>
<td>-1.71</td>
<td>0.09</td>
</tr>
<tr>
<td>Andrena uvulariae</td>
<td>86</td>
<td>-0.209</td>
<td>0.233</td>
<td>-0.9</td>
<td>0.37</td>
</tr>
<tr>
<td>Andrena vicina</td>
<td>44</td>
<td>-2.66</td>
<td>0.75</td>
<td>-3.55</td>
<td><0.01</td>
</tr>
<tr>
<td>Augochlorella aurata</td>
<td>368</td>
<td>-2.637</td>
<td>0.38</td>
<td>-6.95</td>
<td><0.01</td>
</tr>
<tr>
<td>Ceratina calcarata</td>
<td>166</td>
<td>-2.222</td>
<td>0.335</td>
<td>-6.63</td>
<td><0.01</td>
</tr>
<tr>
<td>Ceratina dupla</td>
<td>102</td>
<td>-2.965</td>
<td>0.54</td>
<td>-5.49</td>
<td><0.01</td>
</tr>
<tr>
<td>Lasioglossum coeruleum</td>
<td>87</td>
<td>-0.01</td>
<td>0.31</td>
<td>-0.03</td>
<td>0.97</td>
</tr>
<tr>
<td>Lasioglossum cressonii</td>
<td>44</td>
<td>-1.358</td>
<td>0.44</td>
<td>-3.09</td>
<td><0.01</td>
</tr>
<tr>
<td>Lasioglossum ephialtum</td>
<td>37</td>
<td>-2.11</td>
<td>0.658</td>
<td>-3.2</td>
<td><0.01</td>
</tr>
<tr>
<td>Lasioglossum planatum</td>
<td>55</td>
<td>-0.774</td>
<td>0.722</td>
<td>-1.07</td>
<td>0.28</td>
</tr>
<tr>
<td>Lasioglossum subviridatum</td>
<td>144</td>
<td>-0.313</td>
<td>0.354</td>
<td>-0.88</td>
<td>0.38</td>
</tr>
<tr>
<td>Lasioglossum taylorae</td>
<td>138</td>
<td>-1.835</td>
<td>0.335</td>
<td>-5.48</td>
<td><0.01</td>
</tr>
<tr>
<td>Lasioglossum versans</td>
<td>32</td>
<td>0.886</td>
<td>0.457</td>
<td>1.94</td>
<td>0.05</td>
</tr>
<tr>
<td>Nomada luteoloides</td>
<td>67</td>
<td>-1.424</td>
<td>0.31</td>
<td>-4.61</td>
<td><0.01</td>
</tr>
<tr>
<td>Nomada maculata</td>
<td>456</td>
<td>-2.611</td>
<td>0.277</td>
<td>-9.42</td>
<td><0.01</td>
</tr>
<tr>
<td>Osmia atriventris</td>
<td>171</td>
<td>-1.674</td>
<td>0.251</td>
<td>-6.66</td>
<td><0.01</td>
</tr>
<tr>
<td>Osmia pumila</td>
<td>133</td>
<td>-1.745</td>
<td>0.267</td>
<td>-6.54</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Figure 9. Northern region of the Quabbin Reservoir in western Massachusetts (42.46°N, -72.32°W). Black stars indicate harvest sites where bee and vegetation sampling took place.
Figure 10. Bee sampling scheme applied to all forest openings. Sample points consisted of three bee bowls placed on the ground < 1 m apart.
Figure 11. Bee abundance and diversity per transect in openings and mature forest. Bars represent standard error. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.
Figure 12. Non-metric multidimensional scaling ordination of opening and forest transects with raw (A) and binary (B) community data. The two habitat types appear to separate within ordination space using raw data, but when abundance is removed there is no apparent separation. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.
Figure 13. Bee abundance and Shannon’s diversity index in openings in relation to the percent of the surrounding landscape that was early-successional habitat within 500 m (PLAN500). Lines represent the predicted values of fitted generalized linear mixed models that included a linear and quadratic term for PLAN500 as fixed effects and site as a random effect. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.
Figure 14. Bee abundance and Shannon’s diversity index in openings in relation to vegetation height. Lines represent the predicted values of fitted generalized linear mixed models that included site as a random effect. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.
Figure 15. Bee diversity (Shannon's diversity index) in openings in relation to the coefficient of variation of vegetation height. Blue line represents the predicted values of a fitted generalized linear mixed model that included site as a random effect. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.
Figure 16. Bee abundance and Shannon's diversity index in openings in relation to the floral abundance (see section 2.2 for calculation). Lines represent the predicted values of fitted generalized linear mixed models that included site as a random effect. Data comes from bowl trap surveys conducted in early spring, mid-summer, and late summer in 2014 and 2015 in western Massachusetts.
APPENDIX A

BIRD SPECIES

Bird species detected within forest openings in western Massachusetts in 2014 and 2015. Number of openings within which each species was detected is provided for both years.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Code</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Max. 90)</td>
<td>(Max. 104)</td>
</tr>
<tr>
<td>Ruffed Grouse</td>
<td>Bonasa umbellus</td>
<td>RUGR</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Mourning Dove</td>
<td>Zenaida macroura</td>
<td>MODO</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yellow-billed Cuckoo</td>
<td>Coccyzus americanus</td>
<td>YBCU</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Black-billed Cuckoo</td>
<td>Coccyzus erythropthalmus</td>
<td>BBCU</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Ruby-throated Hummingbird</td>
<td>Archilochus colubris</td>
<td>RTHU</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>Broad-winged Hawk</td>
<td>Buteo platypterus</td>
<td>BWHA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Red-bellied Woodpecker</td>
<td>Melanerpes carolinus</td>
<td>RBWO</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yellow-bellied Sapsucker</td>
<td>Sphyrapicus varius</td>
<td>YBSA</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>Downy Woodpecker</td>
<td>Picoides pubescens</td>
<td>DOWO</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hairy Woodpecker</td>
<td>Picoides villosus</td>
<td>HAWO</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Northern Flicker</td>
<td>Colaptes auratus</td>
<td>NOFL</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Pileated Woodpecker</td>
<td>Dryocopus pileatus</td>
<td>PIWO</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Eastern Wood-Pewee</td>
<td>Contopus virens</td>
<td>EAWP</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Least Flycatcher</td>
<td>Empidonax minimus</td>
<td>LEFL</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Eastern Phoebe</td>
<td>Sayornis phoebe</td>
<td>EAPH</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Great-crested Flycatcher</td>
<td>Myiarchus crinitus</td>
<td>GCFL</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Yellow-throated Vireo</td>
<td>Vireo flavifrons</td>
<td>YTVI</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Blue-headed Vireo</td>
<td>Vireo solitarius</td>
<td>BHVI</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Bird Name</td>
<td>Scientific Name</td>
<td>Code</td>
<td>Count</td>
<td>Percentage</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Red-eyed Vireo</td>
<td>Vireo olivaceus</td>
<td>REVI</td>
<td>54</td>
<td>90</td>
</tr>
<tr>
<td>Blue Jay</td>
<td>Cyanocitta cristata</td>
<td>BLJA</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Common Raven</td>
<td>Corvus corax</td>
<td>CORA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Black-capped Chickadee</td>
<td>Poecile atricapillus</td>
<td>BCCH</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Tufted Titmouse</td>
<td>Baeolophus bicolor</td>
<td>TUTI</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>White-breasted Nuthatch</td>
<td>Sitta carolinensis</td>
<td>WBNU</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>House Wren</td>
<td>Trogdylotes aedon</td>
<td>HOWR</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Blue-gray Gnatcatcher</td>
<td>Polioptila caerulea</td>
<td>BGGN</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Veery</td>
<td>Catharus fuscescens</td>
<td>VEER</td>
<td>26</td>
<td>49</td>
</tr>
<tr>
<td>Hermit Thrush</td>
<td>Catharus guttatus</td>
<td>HETH</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Wood Thrush</td>
<td>Hylocichla mustelina</td>
<td>WOTH</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>American Robin</td>
<td>Turdus migratorius</td>
<td>AMRO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gray Catbird</td>
<td>Dumetella carolinensis</td>
<td>GRCA</td>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td>Cedar Waxwing</td>
<td>Bombycilla cedrorum</td>
<td>CEDW</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Purple Finch</td>
<td>Haemorhous purpureus</td>
<td>PUFI</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>American Goldfinch</td>
<td>Spinus tristis</td>
<td>AMGO</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Ovenbird</td>
<td>Seiurus aurocapilla</td>
<td>OVEN</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Blue-winged Warbler</td>
<td>Vermivora cyanoptera</td>
<td>BWWA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Black-and-white Warbler</td>
<td>Mniotilta varia</td>
<td>BAWW</td>
<td>46</td>
<td>66</td>
</tr>
<tr>
<td>Common Yellowthroat</td>
<td>Geothlypis trichas</td>
<td>COYE</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>American Redstart</td>
<td>Setophaga ruticilla</td>
<td>AMRE</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td>Magnolia Warbler</td>
<td>Setophaga magnolia</td>
<td>MAWA</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Blackburnian Warbler</td>
<td>Setophaga fusca</td>
<td>BLBW</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Yellow Warbler</td>
<td>Setophaga petechia</td>
<td>YEWA</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Chestnut-sided Warbler</td>
<td>Setophaga pensylvanica</td>
<td>CSWA</td>
<td>77</td>
<td>90</td>
</tr>
<tr>
<td>Black-throated Blue Warbler</td>
<td>Setophaga caerulescens</td>
<td>BTBW</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>Pine Warbler</td>
<td>Setophaga pinus</td>
<td>PIWA</td>
<td>14</td>
<td>38</td>
</tr>
<tr>
<td>Species</td>
<td>Scientific Name</td>
<td>Abbreviation</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Yellow-rumped Warbler</td>
<td>Setophaga coronata</td>
<td>YRWA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Prairie Warbler</td>
<td>Setophaga discolor</td>
<td>PRAW</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Black-throated Green Warbler</td>
<td>Setophaga virens</td>
<td>BTNW</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Eastern Towhee</td>
<td>Pipilo erythrophthalmus</td>
<td>EATO</td>
<td>62</td>
<td>73</td>
</tr>
<tr>
<td>Chipping Sparrow</td>
<td>Spizella passerina</td>
<td>CHSP</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Scarlet Tanager</td>
<td>Piranga olivacea</td>
<td>SCTA</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Northern Cardinal</td>
<td>Cardinalis cardinalis</td>
<td>NOCA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Rose-breasted Grosbeak</td>
<td>Pheucticus ludovicianus</td>
<td>RBGR</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Indigo Bunting</td>
<td>Passerina cyanea</td>
<td>INBU</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Brown-headed Cowbird</td>
<td>Molothrus ater</td>
<td>BHCO</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Baltimore Oriole</td>
<td>Icterus galbula</td>
<td>BAOR</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>
Bee species collected using bowl trap surveys in early spring, mid-summer, and late summer at 30 locations in western Massachusetts in 2014 and 2015. Life history information is shown as well as abundance for opening transects, edge points, forest transects, and total combined, across all 30 locations. Bees were sampled at a single sampling point at the forest edge, but this data was not included in analyses. Life history information include origin indicated by N (native) or E (exotic), pollen specificity (Diet) indicated by P (polylectic) or O (oligolectic), nesting location (Nest) indicated by S (soil-nesting), SW (soft-wood-nesting), C (cavity-nesting), and P (pith-nesting), and sociality (Soc) indicated by E (social), S (solitary), or P (parasitic).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hylaeus affinis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>C</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>Hylaeus modestus</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>N</td>
<td>C</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>Colletes inaequalis</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>Augochlora pura</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>21</td>
<td>21</td>
<td>N</td>
<td>SW</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>Species</td>
<td>Count</td>
<td>Males</td>
<td>Females</td>
<td>Workers</td>
<td>Nest</td>
<td>Brood</td>
<td>Pupae</td>
<td>Larvae</td>
<td>Eggs</td>
<td>Humidity</td>
<td>Temperature</td>
<td>Precipitation</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Augochlorella aurata</td>
<td>269</td>
<td>79</td>
<td>25</td>
<td>9</td>
<td>13</td>
<td>7</td>
<td>402</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Augochloropsis metallica</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Agapostemon virescens</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Halictus confusus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Halictus rubicundus</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum spp.</td>
<td>25</td>
<td>44</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>18</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasioglossum acuminatum</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum athabascense</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum atwoodi</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum coeruleum</td>
<td>14</td>
<td>26</td>
<td>3</td>
<td>6</td>
<td>17</td>
<td>30</td>
<td>96</td>
<td>N</td>
<td>SW</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum coriaceum</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>30</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum cressonii</td>
<td>26</td>
<td>9</td>
<td>16</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>62</td>
<td>N</td>
<td>SW</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum ephialtum</td>
<td>29</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>41</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum foxii</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum laevissimum</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum leucozonium</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>E</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum nelumbonis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>O</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum nigroviride</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>N</td>
<td>SW</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum oblongum</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>N</td>
<td>SW</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum planatum</td>
<td>14</td>
<td>29</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>57</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum quebecense</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>28</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum subviridatum</td>
<td>44</td>
<td>37</td>
<td>12</td>
<td>13</td>
<td>30</td>
<td>33</td>
<td>169</td>
<td>N</td>
<td>SW</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum taylorae</td>
<td>66</td>
<td>53</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>163</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum tegulare</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum versans</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>4</td>
<td>38</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum versatum</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lasioglossum viridatum</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Sphecodes coronus</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Sphecodes mandibularis</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Sphecodes townesi</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Andrena bradleyi</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>N</td>
<td>S</td>
<td>O</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena carlini</td>
<td>74</td>
<td>32</td>
<td>7</td>
<td>5</td>
<td>23</td>
<td>30</td>
<td>171</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena carolina</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>N</td>
<td>S</td>
<td>O</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena ceanothi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena cressonii</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena forbesii</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Count</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Andrena frigida</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>O</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena imitatrix</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena mandibularis</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena melanochroa</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>N</td>
<td>S</td>
<td>O</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena nigrihirta</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena rufosignata</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>25</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena rugosa</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>17</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena tridens</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>17</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena uvulariae</td>
<td>31</td>
<td>17</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>28</td>
<td>94</td>
<td>N</td>
<td>S</td>
<td>O</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena vicina</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>45</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena violae</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>N</td>
<td>S</td>
<td>O</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena wilkella</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>E</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Andrena spp.</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmia atriventris</td>
<td>73</td>
<td>71</td>
<td>8</td>
<td>12</td>
<td>21</td>
<td>6</td>
<td>191</td>
<td>N</td>
<td>C</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Osmia bucephala</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>N</td>
<td>C</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Osmia cornifrons</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>16</td>
<td>E</td>
<td>C</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Osmia georgica</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>C</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Osmia inspergens</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>N</td>
<td>C</td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>N</td>
<td>C</td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmia lignaria</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmia proxima</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmia pumila</td>
<td>31</td>
<td>82</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmia virga</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoplitis producta</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoplitis spoliata</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratina calcarata</td>
<td>27</td>
<td>123</td>
<td>2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratina calcarata/dupla</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratina dupla</td>
<td>32</td>
<td>65</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratina mikmaqi</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombus bimaculatus</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombus impatiens</td>
<td>20</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombus perplexus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombus sandersoni</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombus sandersoni/vagans</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombus vagans</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada armatella</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada composita</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada cressonii</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada depressa</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada gracilis</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada gracilis/xanthura</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada illinoensis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada imbricata</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada luteoloides</td>
<td>43</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>74</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada maculata</td>
<td>353</td>
<td>70</td>
<td>39</td>
<td>4</td>
<td>23</td>
<td>10</td>
<td>499</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada pygmaea</td>
<td>12</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>24</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada sayi/illinoensis</td>
<td>11</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomada spp. (bidentate)(^1)</td>
<td>117</td>
<td>25</td>
<td>10</td>
<td>9</td>
<td>15</td>
<td>17</td>
<td>190</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1539</td>
<td>865</td>
<td>209</td>
<td>129</td>
<td>301</td>
<td>273</td>
<td>3316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Bidentate *Nomada* that are not of the species *N. 74aculate* and could not be determined due to incomplete taxonomy.
APPENDIX C

FLOWERING PLANT SPECIES

Flowering plant species at sample points. The number of openings at which each flowering plant was detected is provided for opening transects, the forest edge, and forest transects. Flowering plants were surveyed at single sample points placed at the forest edge between transects, but were not included in analyses.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>Opening</th>
<th>Edge</th>
<th>Forest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alder</td>
<td>Alnus spp.</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>American Chestnut</td>
<td>Castanea dentata</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anemone</td>
<td>Anemone spp.</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Aster Species 1</td>
<td>Aster spp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aster Species 2</td>
<td>Aster spp.</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bedstraw</td>
<td>Galium spp.</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Blackberry/Raspberry</td>
<td>Rubus spp.</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blueberry</td>
<td>Vaccinium spp.</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bristly Sarsaparilla</td>
<td>Aralia hispida</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cow Wheat</td>
<td>Melampyrum lineare</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dewberry</td>
<td>Rubus spp.</td>
<td>17</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Goldenrod</td>
<td>Solidago spp.</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Goldthread</td>
<td>Coptis trifolia</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Indian Pipe</td>
<td>Monotropa uniflora</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Mountain Laurel</td>
<td>Kalmia latifolia</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Partridge-Berry</td>
<td>Mitchella repens</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Red Maple</td>
<td>Acer rubrum</td>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Sessile Bellwort</td>
<td>Uvularia sessilifolia</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Species</td>
<td>Scientific Name</td>
<td>Values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starflower</td>
<td>Trientalis borealis</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whorled Loosestrife</td>
<td>Lysimachia quadrifolia</td>
<td>6 3 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild White Violet</td>
<td>Viola macloskeyi</td>
<td>1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wintergreen</td>
<td>Gaultheria procumbens</td>
<td>1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>0 1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. American Association for the Advancement of Science 313, 351–354.

McGarigal, K., Cushman, S.A., Ene, E. 2012. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following website: <http://www.umass.edu/landeco/research/fragstats/fragstats.html>

Sudan, R. 2016. The effects of forest age and management on bee communities of production forests in the southern United States. University of New Orleans, New Orleans, LA, USA.

Williams, N.M., Winfree, R. 2013. Local habitat characteristics but not landscape urbanization drive pollinator visitation and native pant pollination in forest remnants. Biological Conservation 160, 10–18.

