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Figure 12: Expression of IBPol-PTP does not rescue POLIB RNAi  

A) Growth curve of uninduced, tetracycline-induced IBRNAi + IBPol-PTP clones and parental 

POLIB RNAi procyclic cells. Values are the mean (± standard deviation) from three independent 

replicates for clone P2F9. B) Northern blots of total RNA from uninduced (U) and cultures induced 

with 2 µg/ml (2) or 4 µg/ml tetracycline (4) for 48 hours hybridized with radiolabeled probe 

specific for POLIB. Hybridization with a-tubulin was the loading control. C) Representative 

Western blot detection of IBWTPTP and EF1a1 levels over 10 days of induced complementation for 

clonal cell line P2F9. D) Southern blot showing changes in the free minicircle population detected 

with radiolabeled minicircle probe. N/G, nicked/gapped; CC, covalently closed; L, -tubulin 

loading control.  
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Figure 13: Effects of IBRNAi + IBPol-PTP on kDNA morphology. 

Clonal cell line IBRNAi + IBPol-PTP P2F9 was grown in the absence and presence of 4 µg/ml tetracycline. 

A) Top panel, DAPI-stained fluorescent images; Bottom panel, YL1/2 stained basal bodies. Representative 

images for the indicated time points showing kDNA morphology. N, nucleus, K, normal sized kDNA; 

*replicating kDNA; arrowhead, small kDNA; arrow no kDNA. Scale bar, 5 µm. B) Quantification of 

kDNA morphology. DAPI and YL1/2 stained cells were scored for number of nuclei, kDNA and basal 

bodies. 150 cells were randomly selected and scored for each time point. 
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DISCUSSION 

 
 

Mitochondrial DNA replication in trypanosomes is a complex process that involves a multiplicity of DNA 

polymerases that play non-redundant roles in the overall maintenance of the network. Amongst the Family 

A mitochondrial DNA polymerases in trypanosomes, POLIB, IC and ID are essential for growth and kDNA 

maintenance. The presence of 4 independent Pol I-like mitochondrial DNA polymerases in kinetoplastids 

is unprecedented among eukaryotes (Figure 1). One feature of POLIB not found in any other family A 

DNA polymerase is the presence of an exonuclease domain embedded within the polymerase domain 

(Figure 3). 

Interestingly, the 4 mitochondrial DNA polymerases and the unique POLIB domain structure is conserved 

among all kinetoplastid organisms sequenced thus far (Figure 1A) (TritrypDB.org). 

The exact contributions of the annotated domains to the essential function of POLIB are unclear. While 

CRISPR tools have recently been developed for the closely related trypanosomatid T. cruzi and 

Leishmania, they have not been optimized for use in T. brucei. Therefore, RNAi is still the best genetic 

tool for studying the function of a gene in African trypanosomes.  

In this body of work, we established a dually inducible RNAi plus overexpression complementation system 

to study the roles of the two predicted domains in the overall function of POLIB in vivo. We predicted that 

the predominant role of POLIB was nucleotidyl incorporation that resides in the DNA polymerase domain. 

To test our hypothesis, we investigated the structure-function relationship by ectopically expressing POLIB 

variants in T. brucei depleted of endogenous POLIB. To establish the complementation system, the PTP 

tagged variant proteins were first expressed in the cells using standard levels of tetracycline. The variant 

protein levels were abundant and well above POLIBWTPTP levels. Microscopy indicated homogeneous 

expression of the variant protein in most cells. The high levels of the variant protein being produced neither 

caused a growth defect nor impaired the kDNA replication machinery as observed by growth curve, 

Southern blot analyses and microscopy. This was conclusive that the variants intrinsically did not have any 

negative effects on the cells. 
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The complementation system as described in Figure 4 allows for simultaneous tetracycline inducible 

expression of a dsRNA to deplete a gene and co-express a protein within the same inducible system. Initial 

western blot analysis revealed that the cells were expressing the recoded wildtype variant levels 0.4 fold 

below endogenous POLIBWTPTP protein levels. To address this, an adaptation was made to the 

complementation system by increasing the concentration of the tetracycline inducer to ensure maximal 

levels of variant protein being produced. It was necessary to be certain that using a non-standard and higher 

concentration of tetracycline was neither saturating the RNAi machinery of the parental POLIB RNAi cell 

line nor impacting normal cell growth in 29-13 cells. 29-13 cells grown in the absence or presence of 

different concentrations of tetracycline displayed no change in fitness. Inducing POLIB RNAi with the 

different concentrations of tetracycline produced a similar growth defect. RT-qPCR analyses revealed an 

increase in POLIB gene knockdown by using higher concentrations of tetracycline. Southern blot analyses 

indicated similar patterns for both covalently closed and nicked/gapped minicircle species.  

In the complementation cell lines, induction with a higher concentration of tetracycline (4 µg/ml) resulted 

in higher levels of variant protein being produced, but they were still below endogenous POLIBWTPTP 

levels. Majority of the cells displayed low levels of the variant protein while only a small subset displayed 

robust fluorescent signal. The RNAi vector used for the complementation system is driven by the procyclin 

promoter and contains two tetracycline operator sequences that must be unbound from the repressor using 

tetracycline. In the overexpression vector, a strong T7 promoter upstream of just one tetracycline operator 

sequence drives transcription. The high knockdown of the endogenous gene and low levels of variant 

protein being produced suggests that there is an unexplainable preference for tetracycline to bind first to 

the two operators in the RNAi vector. The deficiency in the variant protein being produced especially 

during the critical time points where the cells begin to lose fitness could be the reason why there is an 

incomplete rescue of the growth phenotype.  

In the parental POLIB RNAi cells, microscopy revealed that 54% of the total population of cells had no 

kDNA by 10 days of RNAi and 40% of the cells had small kDNA (Bruhn et al., 2010). In the IBRNAi + 

IBWTPTP cells, about 28% of the total population had no kDNA by 10 days of induction and 62% of the 



37  

cells had small kDNA. It is evident that complementation with the wildtype protein slowed down the 

accumulation of dyskinetoplastic cells. The lack of complete rescue of the POLIB RNAi phenotype 

suggests that the expression of POLIB is so tightly controlled that even a moderate change from wildtype 

expression levels can irreversibly impact fitness. It also could be due to insufficient protein production at 

the critical time points when loss of kDNA reaches a certain threshold. The RNAi vector has two operator 

sequences that must be unbound from repressor as opposed to the overexpression vector that has just one 

tetracycline operator. Despite this, it’s clear from northern blot and western blot that RNAi induction is 

preferentially favored over expression of variant protein. The lack of precise and independent control over 

the expression of exogenous mutants and RNAi is critical. To address this, the vanillic acid inducible 

system (Sunter, 2016) adapted as SMUMA can be used to operate simultaneously with the tetracycline-

based system. SMUMA (Single Marker UMAss) carries T7 RNA polymerase, tetR and vanillic acid 

repressor (vanR). The RNAi vector and the overexpression plasmid we used in our experiments, upon 

transfection into T. brucei, get targeted to the rDNA spacer region, a non-transcribed chromosomal locus. 

A potential solution would be to use another RNAi vector that gets integrated into a different chromosomal 

locus like the minichromosomes of trypanosomes (Wickstead et al., 2003). There are many open questions 

as to how the complementation system can be modified in order to attain maximal levels of protein. 

Southern blotting to examine specific effects on the maxicircle populations may provide further insight. At 

this point, it is not possible to reach a conclusion about the exact role of the polymerase domain, but this 

body of work suggests that the domain is likely essential for the role of POLIB in kDNA replication.  
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APPENDICES 

 
 

Appendix A 

 

Table A1. List of primers used in this study.  

Underline, restriction enzyme sites; lowercase letter, plasmid backbone sequence 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene  Purpose   
Primer 
Name  

Primer Sequence  Linker  

TbPOLIB  
(927.11.4690)   

Subcloning  

MK776  
 5'-GTA ACT CGA GAT GCG GCT AAA TAG CTG   

 C-3'  
XhoI  

MK777 
 5'-ACA CTC TAG ACA CCG TAA TTT CTA CAC  

 TGT CAG-3'  
XbaI  

Gibson 
Assembly  

UM055 
 5'-gct tca att gct cGA GAG ATG CGG CTA  

 AAT AGC TGC-3'  
-  

UM056 
 5'-gta ccg ggc cgg atc CGA CTG ATA TAC  

 CCC ACG ATA C-3'  
-  

Site directed 
mutagenesis  

UM108  
 5'-GGC CGT TGC GTG GAA ATT GCC TAC TCG  

 CAG CTG-3'  
 - 

UM109  
 5'-GAT AAA CTT CGT ACA CGC TTC GCT TTG  

 GCT CGA C-3'  
-  

qPCR  
MK563   5'-GTG ATT GCA TTC ATG GCG ACG GAA-3'  -  

MK564   5'-AGT ACT TGG TCC ATG GCTCCA CAA-3'   -  

TERT  
(927.11.10190)  

  
qPCR  

MK804   5'-GAG CGT GTG ACT TCC GAA GG-3'  -  

MK805   5'-AGG AAC TGT CAC GGA GTT TGC-3'  -  
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Appendix B: Supplementary Data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Appendix B1: Analysis of IBWTPTP and IBPol-PTP overexpression in procyclic cells.  

Clonal cell lines were induced with 1 µg/ml tetracycline for 2 days to screen for protein expression. Western 

blot detection of the PTP-tagged variant and EF11 from whole cell lysates. A) Screen of 11 IBWTPTP OE 

clones. 3 x 106 cell equivalents were loaded across all lanes. B) Screen of 8 IBPol-PTP  OE clones. 1 x 106  

cell equivalents were loaded into each well except for +C where 5 x 106  cell equivalents were loaded. +C, 

single allele control cell line endogenously expressing POLIB-PTP; U, Uninduced;  

I, Induced. Clones labeled with red box were selected for further characterization. 
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Appendix B2. Expression of IBWTPTP at selected time points.   

A) Clonal cell line IBWTPTP OE P1D12 was grown in the absence and presence of 1 µg/ml tetracycline. 

B) Clonal cell line IBRNAi + IBWTPTP P2G7 was grown in the absence and presence of 4 µg/ml 

tetracycline. Cells were stained/labeled with DAPI (blue) and anti-protein A (green) at the selected time 

points. Scale bar, 5 µm. 
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Appendix B3: Dual Induction of POLIB RNAi and ectopic expression of IBPol-PTP variant.  

Clonal cell lines were induced with 1 µg/ml tetracycline for 2 days to screen for protein expression. Western 

blot detection of IBWTPTP variant and EF11 from whole cell lysates. Screen of 10 IBRNAi + IBPol-PTP 

clones. +C, single allele control cell line endogenously expressing POLIB-PTP; U, Uninduced; I, Induced. 

1 x 106 cell equivalents were loaded into each well except for +C where 5 x 106 cell equivalents were 

loaded. Clone labeled with red box was selected for further characterization. 
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Appendix B4. Expression of IBPol-PTP at selected time points.   

A) Clonal cell line IBPol-PTP OE P1D8 was grown in the absence and presence of 1 µg/ml 

tetracycline. Cells were stained/labeled with DAPI (blue) and anti-protein A (red) at the selected 

time points.  B) Clonal cell line IBRNAi + IBPol-PTP P2F9 was grown in the absence and presence 

of 4 µg/ml tetracycline. Cells were stained/labeled with DAPI (blue) and anti-protein A (green) at 

the selected time points. Scale bar, 5 µm. 
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