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ABSTRACT

POETRY: IDENTIFICATION, ENTITY RECOGNITION, AND
RETRIEVAL

MAY 2019

JOHN FOLEY

B.S., UNIVERSITY OF MASSACHUSETTS LOWELL

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

Modern advances in natural language processing (NLP) and information retrieval (IR)

provide for the ability to automatically analyze, categorize, process and search textual

resources. However, generalizing these approaches remains an open problem: models that

appear to understand certain types of data must be re-trained on other domains.

Often, models make assumptions about the length, structure, discourse model and

vocabulary used by a particular corpus. Trained models can often become biased toward an

original dataset, learning that – for example – all capitalized words are names of people or

that short documents are more relevant than longer documents. As a result, small amounts

of noise or shifts in style can cause models to fail on unseen data. The key to more robust

models is to look at text analytics tasks on more challenging and diverse data.

Poetry is an ancient art form that is believed to pre-date writing and is still a key form

of expression through text today. Some poetry forms (e.g., haiku and sonnets) have rigid

vii



structure but still break our traditional expectations of text. Other poetry forms drop

punctuation and other rules in favor of expression.

Our contributions include a set of novel, challenging datasets that extend traditional

tasks: a text classification task for which content features perform poorly, a named entity

recognition task that is inherently ambiguous, and a retrieval corpus over the largest public

collection of poetry ever released.

We begin by looking at poetry identification - the task of finding poetry within existing

textual collections, and devise an effective method of extracting poetry based on how it is

usually formatted within digitally scanned books, since content models do not generalize well.

Then we work on the content of poetry: we construct a dataset of around 6,000 tagged spans

that identify the people, places, organizations and personified concepts within poetry. We

show that cross-training with existing datasets based on news-corpora helps modern models

to learn to recognize entities within poetry. Finally, we return to IR, and construct a dataset

of queries and documents inspired by real-world data that expose some of the key challenges

of searching through poetry. Our work is the first significant effort to use poetry in these

three tasks and our datasets and models will provide strong baselines for new avenues of

research on this challenging domain.
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CHAPTER 1

INTRODUCTION

Analyzing, organizing and searching information are the core tasks in natural language

processing (NLP) and information retrieval (IR). In general, techniques developed in these

fields make certain assumptions about the text being analyzed or searched: that it is clear and

descriptive, that it is non-fiction, that it can first be broken into sentences and then parsed

into logical structures or even that it contains legitimate, commonly-understood words. We

propose to study poetry as a domain for IR and NLP techniques because poetry is capable of

breaking all of these assumptions.

Some poems are written for mood or tone, where their goal is not transmitting any

particular set of facts or information, but eliciting or evoking an emotion with words. Others

have clearly-defined structure, (e.g., haiku and sonnets), but style is not mandatory; many

poems eschew capitalization and form – they are essentially a list of words. Some poems are

a mere handful of lines, others are the length of book. Some rhyme within modern languages,

others only before translation or in now-unspoken dialects. Almost no poems are composed of

sentences and phrases, which are often assumed and identified in the first phase of automated

natural language processing tools.

Poetry is an interesting domain because it has similarities to informal and ungrammatical

text like speech and social media posts, connections to political speeches and protest songs,

and it is primarily about emotion and mood while potentially having both fiction and non-

fiction elements in both long and short forms. As a different source of text, it is clear that

models traditionally built on news or web data are going to struggle with the variety present

in poetry and this makes it an interesting domain for study.
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In Chapter 3, we present the challenge of identifying poetry from within longer works.

This text classification task is challenging even to humans and we cannot achieve reasonable

recall with typical content-based classifiers because poems contain a long-tail of subjects and

terms – there will always be poems missed with such a method. We pursue the identification

and extraction of poetry from a large collection of books. While some sources will state that

they contain or possibly contain poetry in their metadata (e.g., title, headings) other poems

are quoted without context or in the midst of another document (e.g., a poem quoted in a

collection of essays by Lowell (1914), presented in Figure 1.1). We extract a large collection

of over 800,000 poem instances from a set of 50,000 books. After de-duplication, we have

600,000 unique pages with poetry.

Poetry is used in order to discuss real world topics, sometimes through satire. In order

to understand external references, we need to identify the entities mentioned in such works.

Poetry also makes heavy use of simile, metaphor and allusion – potentially referencing other

well-known works – in order to communicate emotion and intent.

In Chapter 4, we therefore look at the traditional NLP task of named entity recognition

(NER), where the goal is to label the spans in text that refer to real people, places, organiza-

tions and things. Traditional approaches to NER are unsuitable for unstructured documents

like poetry because almost all state-of-the-art approaches depend on sentence boundaries

and capitalization for efficiency and understanding. Naturally, poetry, like “internet-speak”

discourse, may not contain any punctuation or capitalization while still referring to real-world

entities. We design a method to avoid classical preprocessing steps and to push punctuation

and line breaks into the model itself, so that any available structure can be learned without

being dependent upon it.

With identification and entity recognition in hand, we look at retrieval over poetry data in

Chapter 5. In order to build useful poetry retrieval models, we study some sources of user data

relating to poetry. Using the AOL and MSN query logs, we categorize the dimensions along

which users typically search for poetry. We notice that poetry search is usually motivated
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Figure 1.1: A Poem printed in the middle of an essay by James Russell Lowell (Lowell,
1914).
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by users wanting to identify a poem for a life event or holiday, such as the birth of a child,

a graduation, or mother’s day. We then identify the need to search by metadata, by topic,

and by mood. We build a dataset sourced from these queries and from categories created by

humans in an online poetry collection.

We build a test collection of 20 queries and about 1300 relevance judgments and use it

to explore the relative utility of utility of topical and emotional query models, focusing on

query expansion techniques. We discover that poetry search is unlike other retrieval tasks,

and the prior probability of documents that are likely to be relevant to someone is quite

high, motivating future study of more personalized and specific information needs. Then we

analyze the performance of different vector representations for retrieval, aiming at emotional

words and a combination of emotional and other topical words. We find that these models

struggle in comparison to powerful query expansion models.

1.1 Outline & Contributions

Our contributions are organized hierarchically, by chapter.

In chapter 2, we provide a discussion of work that is related to poetry identification,

classification, entity recognition and information retrieval.

In chapter 3, we define the task of poetry identification from longer works. We select

effective models and show that content based models do not generalize well. Leveraging our

best formatting model, we then build the largest digital collection of poetry in the world.

Contribution 3.1: We introduce and develop a dataset of 2,814 pages
covering 1,381 digitally scanned books labeled for the identification of poetry. This
is the first freely-available benchmark for any poetry identification task.

Contribution 3.2: We show that active-learning based label collection for
poetry tagging leads to overconfidence and bias in results. We further show that
by maintaining a proportion of labels collected by true random-sampling we are
able to more accurately quantify recall of our identification approaches.

Contribution 3.3: We construct a model for poetry identification based on
handcrafted, formatting features which generalizes extremely well to novel data
while also being efficient to train and execute.
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Contribution 3.4: We develop a neural model for poetry identification that
uses no handcrafted features, but demonstrate that this and all content-based
models fail to generalize to unseen books.

Contribution 3.5: We create a collection of 600,000 pages with poetry using
our strongest poetry identification tools from 50,000 books. Unlike most prior
works classifying poetry, we make this full dataset available for future work in the
public domain.

In chapter 4, we explore named entity recognition (NER) on poetry. Motivated by the lack

of capitalization and strict structure in poetry we explore a more structure-independent model

that does not require sentence splitting or additional preprocessing steps. We evaluate the

different features of a modern neural NER model on poetry data, and find that cross-training

on existing NER datasets is the only critical feature.

Contribution 4.1: We collect a novel NER dataset on poetry in order to
create a new and challenging benchmark for NER. Our dataset covers 631 pages
with 5,809 word-level tags.

Contribution 4.2: We provide a discussion on how to collect NER datasets
in this domain, including the relative cost of labeling and how many labels are
required for some learning effectiveness.

Contribution 4.3: We demonstrate that sentence splitting is not required
for training effective NER models on traditional datasets, enabling us to skip
many preprocessing steps while maintaining token-level effectiveness.

Contribution 4.4: We train an NER model that is capable of identifying
poetry from prose (and boilerplate) at the token-level. Our model achieves a
mean AUC of 0.946 on our test dataset, whereas off-the-shelf taggers perform
approximately randomly.

Contribution 4.5: We empirically study the features necessary for an effec-
tive poetry-NER system. The most important need of modern NER algorithms is
more data, and we find that, surprisingly, news-based NER data is most applicable
to poetry and that noisier data from social media is less useful.

In chapter 5, we turn to ad-hoc information retrieval as a task. We present the first query

log study on user information needs in or about poetry on the AOL and MSN query logs. We

identify and quantify types of searching behavior that guide our design of retrieval models.
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We also study a set of tags from human curated poetry available on the internet. With

these two real-world sources, we design an set of 20 queries (alongside 1,347 document

judgments) to explore IR over our novel poetry collection. Unfortunately, it is prohibitively

expensive to deeply explore recall in tasks like ours and future work should consider focusing

on personalized recommendation and search tasks.

Contribution 5.1: We present a query-log and category-based analysis that
helps us to tackle problems in retrieval of poetry that are motivated by real human
needs. We show that queries for poetry mostly break down into poetry desired
for events, and poetry queries are typically refined by metadata, topic, mood and
emotion.

Contribution 5.2: We develop a retrieval dataset over our poetry corpus
aimed at ranking poems in response to a emotion and mood tags using crowdsourc-
ing and pooling. Our dataset includes 1,347 document-based labels for 20 queries,
which fully-judges 22 models to a depth of 10.

Contribution 5.3: We analyze the agreement and labeling task of designing
a retrieval dataset on top of poetry data, identifying the challenge of having high
prior probabilities of relevance with common queries. We determine that the
relative relevance of poetry that is in-topic is difficult for annotators to assess
and future work should explore alternative labeling schemes, such as pairwise
preference in this domain.

Contribution 5.4: We evaluate a set of traditional query-expansion models
on our novel poetry retrieval dataset. We find that expansion based on poetry
data is most effective, but that generalized knowledge is also very useful for
understanding topical queries.

Contribution 5.5: We evaluate and compare two vector-based approaches
to encoding emotional and categorical information into a poetry retrieval model.
Both approaches perform more poorly than typical query expansion approaches,
and the categorical dataset is more effective. The emotion dataset may be too
small for effective use in this broad domain, or it may be that more fine-grained
emotional categories are needed.

All of our datasets are publicly-available online1, code is available by request.

1https://ciir.cs.umass.edu/downloads/poetry/
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CHAPTER 2

RELATED WORK

Our related work section will parallel the structure of this thesis. First, we will discuss

work most related to our our poetry identification task (Chapter 3, §2.1), then we will discuss

work related to named entity recognition for poetry (Chapter 4, §2.2), and finally we will

discuss work related to our query log analysis and poetry retrieval task (Chapter 5, §2.3,

§2.4). We provide a short discussion in Section 2.5.

Since we explore three different tasks in this dissertation we introduce some necessary

background and related work here but also introduce more when tasks and approaches are

most relevant.

2.1 Poetry Identification

Work relevant to poetry identification falls into two categories: work that performed

some categorization of existing texts into poetry or not, and work that sought to extract

sub-documents that were poetry which is our goal.

2.1.1 Poetry Identification in Longer Works

Underwood et al. (2013) present a study of genre in Hathi Trust books, and one of their

genres is poetry, so their techniques could be used for determining if a given book is a book

of poetry. However, they evaluate at the book level, so they are looking for books whose

contents are mostly or entirely poetry. As we will discuss and demonstrated by the example

in Figure 3.1, poetry identification at the page level is a different kind of challenge: although

Underwood et al. labeled pages in sequence, it appears that the ultimate goal was correct

7



book-level labels. At the book level, there are many important textual clues that can be

used, e.g., metadata. Basically, they are able to capture book-level metadata: it is unlikely

that a book containing collections of poetry will not mention poems or poetry in the first few

pages (which are usually the title, publishing information, and foreword information).

In a later interim report, Underwood (2014) presents a deeper analysis and page-level

evaluate for genre detection, which includes poetry. Their predictions are publicly available1,

but the corresponding text is not without collaboration with the Hathi-Trust to the best of

our knowledge. In this work, they notice some of the same challenges as us with collecting

training data from rare classes. They chose to tag whole volumes as training data and focused

on optimizing for precision. We chose to tag a small number of pages from more books and

focus on recall.

In a similar task, Lorang et al. (2015) use image classification approaches to try to

extract poetry from scanned newspapers. More recently, Kilner and Fitch (2017) explore

extracting poetry from scanned Australian newspapers, and base their features on earlier

poetry recognition work (Tizhoosh et al., 2008). These works inspire features in our formatting-

model of poetry (Chapter 3).

2.1.2 Poetry in Document and Genre Classification

Recently, Chaudhuri et al. (2018) investigate separating latin prose and verse and find

that specific stylistic structure is the key feature in classification. Their dataset is small and

limited to specific classics already classified by hand. Jamal et al. (2012) presents a study

of Malay poetry by theme and into poetry or non-poetry using support vector machines.

Although they test a version of the poetry identification task, they do not do so from within

longer works.

Singhi and Brown (2014) explore the differences and similarities between Wikipedia, news,

lyrics, and poetry. They focus on the use of adjectives, and find that classifying into one of

1https://github.com/tedunderwood/genre
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{article, lyrics, poetry} to be quite challenging: achieving 0.67 accuracy for lyrics, and 0.57 for

poetry while getting much better (0.80) for articles. These accuracies from adjective-focused

language modeling demonstrate how difficult poetry identification can be. In error analysis,

they find that some musicians, e.g., Bob Dylan, have much more poetic lyrics, and that they

are more likely to be mis-classified as poetry. Since we focus on identifying and extracting

poetry from text documents, there is little difference between lyrics of a song and poetry

(when in print, one could argue for lyrics either being poetry or being something distinct) so

we consider these tasks to be equivalent in order to limit the expertise required for judgments.

Choi et al. (2016) present an automatic subject-based tagging system based upon lyrics

and user interpretations of lyrics. They found that user interpretations were more useful for

subject classification than lyrics because lyrics are poetry, and are semantically ambiguous,

and that user interpretations tend to be clearer and easier to analyze. They use 100 songs

selected from 8 categories in order to explore balanced classification.

In general, all of these works focus on datasets that are both proprietary and small. Our

poetry identification task, combined with retrieval directly offers an alternative to expensive

manual collection techniques.

A similar line of work also includes genre identification, and although numerous works

study genre on the web (Rosso, 2008; Chaker and Habib, 2007; Sharoff, 2010; Kumari et al.,

2014) and in news domains (Petrenz, 2014), these works make the assumption that one

document will have a singular genre. One work in genre identification considers scanned

educational documents (similar to scanned books), and they train a line-based classifier to

identify noisy text for the purpose of removing them to improve document clustering (Jang

et al., 2017), which is similar to an approach we will take in Chapter 3 but for a very different

task.
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2.2 Named Entity Recognition in Poetry

Entities have played a key role in a number of challenges in the information retrieval

community, including TREC tasks (De Vries et al., 2008; Balog et al., 2010; Demartini et al.,

2010; Aslam et al., 2013) and TAC challenges (McNamee and Dang, 2009). Entity-aware

ranking methods have been shown to achieve state-of-the-art results for improving ad-hoc

retrieval (Dalton et al., 2014; Xiong and Callan, 2015; Dietz et al., 2017a).

Modern approaches to named entity recognition focus on word and character embeddings.

Lample et al. (2016) showed that neural architectures without additional training data can

match state-of-the-art results with handcrafted features and large gazetteers. Work in NLP

moves quickly, and with most modern focus on different neural architectures and techniques

such as attention (Vaswani et al., 2017), adversarial learning (Yang et al., 2018), multi-task

learning for cross-lingual NER (Wang et al., 2017). Recently, extremely large models have

captured the attention of researchers, but they are not practical for our needs (Devlin et al.,

2018), due to their large memory requirements and so we focus on simpler, LSTM-based

models.

There is an incredible amount of work on neural network models for NLP, as surveyed

by Goldberg (2016). It is now dominated by LSTM approaches, of which the standard LSTM

can be shown to outperform variants if properly trained (Greff et al., 2017). Realistically,

speaking, there are only a handful of techniques for dealing with variable-length inputs in

neural networks, and we will discuss a few different sequence adapters: recursive neural

networks (or RNNs) (Rumelhart et al., 1986), bidirectional long short-term memory networks

(or LSTMs) (Hochreiter and Schmidhuber, 1997), and simple addition (Mikolov et al., 2013)

as alternatives for learning. Since this thesis does not propose novel architecture or sequence

adaptation, we consider the internals of these units out of scope.

Interestingly, Won et al. (2018) recently found that for the identification of place names in

challenging (historical) corpora, ensembles of NER tools and models performed much better

than individual tools, perhaps as a form of regularization.
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2.2.1 Historical NLP

A number of works explore the generalization of modern natural language processing

tools to historical and literary collections. Bamman (2017) presents a table containing the

results of many studies, which all indicate a signficant 20-30% drop in performance. Historical

sources tend to be quite small: the Tycho Brahe historical Portuguese corpus is one of the

largest and contains 76 texts, with 3.3 million words (Galves and Faria, 2010), which is quite

impressive given how expensive it is to collect linguistic annotations.

There have been some successes in generalizing part-of-speech tagging to historical content.

Rayson et al. (2007) focus on improving a rule-based system on Shakespeare’s plays by tackling

the unification of word variants. They see a 3% improvement on accuracy from automatically

replacing words with modern spellings, and a 4% improvement by doing so manually, although

they do not close the gap fully to in-domain data. Most follow-on works on historical english

leverage a tool they published later, VARD (Baron and Rayson, 2008). Scheible et al. (2011)

corroborate these kinds of improvements for early-modern German.

Yang and Eisenstein (2016) point out that word replacement fails to capture the changes

in syntactic structure or word usage that might be confusing to algorithms trained on modern

sources. They then propose and evaluate a feature-embedding approach (like the word-

skipgram model) to predict features based on words in context that improves part-of-speech

tagging. They also find that some robustness can be created by using word embeddings

or brown clusters as features. Recently, neural NER approaches that start from word

embeddings (Lample et al., 2016) have completely replaced the handcrafted features for

which Yang and Eisenstein trained feature embeddings for better robustness. In this work,

we present a neural model for NER on poetry but expect to compare to such approaches in

the future as we explore more NLP tasks on poetry data.

Pennacchiotti and Zanzotto (2008) present study of historical Italian works using a part-

of-speech tagger trained on modern newswire. 9 of the 14 historical documents they select are

poetry rather than prose, and they find that from a lexical perspective, there’s no difference
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in coverage in their dictionary – poetry and prose use roughly the same percentage of known

words in this corpus. They evaluate part of speech tagging, but do not observe any trends on

poetry vs. prose performance, seeing trends dominated by the age of the text, with earlier

texts being harder for modern tools to analyze.

Since our poetry data is sampled from publicly-available digitally scanned books, most of

it could be considered historical content. Therefore, our study of NER contributes to our

understanding of how to generalize NLP tools to historical content, and our finding that

a neural model can learn from both modern news-NLP and poetry from digitally scanned

books suggests that a domain-independent story for NLP tasks may be improving.

2.2.2 Domain-Specific NLP

Although it is well-known that NLP models struggle to transfer across domains and to

dialects, most works still tend to focus on a single domain.

One of the domains in which natural language processing approaches explore less

traditionally-structured text is on so-called microblog data, such as Twitter. Adapting

part-of-speech labeling to this domain required 1800 labeled tweets and novel feature de-

velopment (Gimpel et al., 2011). Work on named entity recognition required annotation of

2400 tweets, and Ritter et al. (2011) explicitly found that using out-of-domain training data

lowered performance and they needed this data explicitly to train models that would rely

less-heavily on capitalization. More modern methods on twitter NLP tasks have turned to

neural approaches, e.g., sentiment analysis (Becker et al., 2017), NER (Lopez et al., 2017),

event extraction (Farajidavar et al., 2017), etc.

Another domain in which work on NER and NLP tasks has received a lot of attention is the

bio-medical domain (Leaman and Gonzalez, 2008; Krallinger et al., 2017). Following modern

work in NLP, approaches in specific domains are also moving toward neural approaches (Habibi

et al., 2017).
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2.3 Query Log Analysis

Analyzing user behavior through query logs has a long history, dating back before modern

web search (Bates et al., 1993). Some of the first web studies were done by Excite (Jansen

et al., 1998) and AltaVista (Silverstein et al., 1999). Queries are often classified into broad

categories: navigational, informational, resource or transactional (Broder, 2002), and different

kinds of queries benefit from different features and retrieval models. This understanding of

queries was backed up by the analysis of Rose and Levinson (2004), who had a hierarchy built

around navigational, informational and resource information needs. These works provided

fundamental understanding of how users imperfectly express their intent through queries in

web search.

Most academic studies of query logs and user behaviors depend upon the releases of the

AOL (Pass et al., 2006) and MSN (Craswell, 2009) query logs. Many users in the AOL

log have been de-anonymized (Amitay and Broder, 2008), and as a result of this and the

aging data, few modern studies refer to these logs. However, the utility of learning from

user data means that studies continue to be performed on this kind of data, despite ethical

considerations.

Systems that can automatically identify the intent of a users’ query can help retrieve

suitable results more effectively. This work is closest to our goal of understanding how

users retrieve poetry. There are many works that aim to identify user intent, and this has

been the subject of the “Query Representation and Understanding Workshop” at SIGIR (Li

et al., 2011). Approaches include learning from click logs (Li et al., 2008), Wikipedia (Hu

et al., 2009a), or other resources. Some works attempt to directly create a taxonomy of user

intents (Yin and Shah, 2010) or to infer information from a query-flow graph (Bai et al.,

2011). Since we aim for a qualitative understanding of user search behavior more than a

model of their behavior (since the logs available to us are older), most modern work on query

log analysis does not directly apply to our needs and goals.
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Figure 5.12: A poem that is clearly influenced by religion and directly personifies many
concepts, including “Doubt”. This poem is highly ranked in a unigram search for “doubt”
but is not straightforward in interpretation.
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5.6 Discussion

Often, information retrieval research focuses on test collections that have content value,

where sources are solely informative. Collections of music, commercial products, and books

are typically considered to be the in the domain of recommender systems, where the dominant

approach is to leverage user behavior to learn similarities between items and user profiles for

suggestion. In this cold-start domain, we have identified some key research questions: how to

collect labels of subjective utility from annotators, how to explore recall in a meaningful way

in rich collections, and how to incorporate emotional meaning into a retrieval system.

We hope that in future efforts that we can better understand the information needs

of users and researchers in such datasets and develop techniques for improving access to

such rich collections where vocabulary mismatch is a difficult problem to evaluate due to

subjectivity.
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CHAPTER 6

CONCLUSION

In this work, we have developed novel datasets for three tasks centered around poetry

extracted from digitally scanned books.

First, we defined poetry identification as a task, where our goal is to locate poetry within

larger works. In doing so, we found that content-based approaches generalize poorly to novel

data and that visual features are currently the most robust the the variety present in this

medium.

Using our state-of-the-art poetry identification models, we automatically extract and

de-duplicate a large dataset of 600,000 pages that are identified as poetry, with very high

accuracy. Our approaches are highly scalable and can be straight-forwardly applied to the

millions of digitally scanned books that are publicly available through various libraries.

Next, we look at named entity recognition within poetry. Dealing with the challenges of

our domain leads us to a simpler, more straightforward neural architecture that skips over

traditional pre-processing steps. We study labeling curves, learning curves and the features

that are necessary for our model’s performance on our new NER dataset. We find that

multitask learning with existing NER datasets on news works quite well and suggests that

poetry NER may hold value for the NLP community as a task.

Finally, we collected a judged set of queries to evaluate an information retrieval task over

poetry data based on real user data in query logs and online poetry categories. We present

lessons learned from the label collection process and provide a small comparison of reasonable

methods for this task, despite a high prior probability of relevance.
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With our contributions in terms of datasets and analysis, poetry can be a useful resource

for better understanding models and tasks that are core to the IR and NLP communities.

Additionally, our related work is full of researchers working on small, private collections of

poetry and our large public datasets can have a large impact on the reproducibility and

effectiveness of similar studies in the future.

6.1 Contributions

In chapter 3, we introduce and develop a poetry identification task alongside a novel

dataset of 2,814 labeled pages from 1,381 digitally scanned books. These pages were collected

with a mix of active-learning approaches in order to expose any problems with generalization

and to ultimately collect a large collection of poetry. We showed that content models,

particularly neural models show promise, but fail to generalize well to new books.

We devise an efficient model based on random forests over formatting features, and execute

it over 50,000 books. After de-duplication, we find that there are 600,000 unique pages with

poetry in this collection which had 17 million regular pages. In the future, we plan to run

this on larger collections of books: early results suggest that a 250,000 books have about 3

million pages worth of poetry, and online libraries have tens of millions of scanned books

now. With larger collections of poetry collected in this manner, we can train more robust

content models and explore the challenge of generalization.

In chapter 4, we explore named entity recognition (NER) on poetry. We deeply analyze

the needs of poetry-based entity recognition. In future studies, we hope to look closer at

the use of personified concepts as entities as well as linking the entities found in poetry

to knowledge bases for better understanding and representation of poems. We evaluate

the different features of a modern neural NER model on poetry data, and find that cross-

training on existing News NER datasets is the only critical feature. We don’t find our social

media dataset (WNUT-16) to be as helpful, but this may be due to its smaller size. The

success of our news-based cross-training in particular contributes a promising approach for
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historical and literary NLP generalization, which has been shown to be particularly difficult

on part-of-speech-tagging (Bamman, 2017).

In chapter 5, we explore information retrieval over poetry. Between our query-log study

and our use of human-curated poetry labels from the poetryfoundation.org dataset, we

develop a sense of user information needs from poetry. If we take our poetry data and make a

live search system available to experts, we expect to see deeper and richer information needs.

Nevertheless, our dataset involves 20 queries and over one thousand document judgments,

which annotates 22 models fully to a depth of 10.

6.2 Future Work

First and foremost, we plan to extend our poetry identification models to millions of

books and collect the world’s largest collection of poetry. Using such a large dataset, we hope

to explore content models again, using poetry-specific word embeddings and representation

learning, to further improve our identification techniques.

This poetry collection introduces a number of information extraction challenges that

we have not yet delved into: e.g., identifying the metadata of this poetry: title, author,

original source, meter, etc. Using insights from our NER model, we hope to identify poetry

at the word level, and can possibly generate a large amount of ground truth for this from our

duplicate poems.

In future work, we hope to explore the effect that poetry data might have on training

more generalizable NER models: can we influence performance on news data? Additionally,

larger traditional datasets may lead to more performance on poetry data. Exploring the

temporal diversity of our works is important for our ability to generalize: Pennacchiotti

and Zanzotto (2008) found that performance of modern-trained data degraded with the

age of texts analyzed. While we tried to preserve the fairness of our collection on the book

level, publication data is often missing or incorrect (Foley and Allan, 2015) and we did not
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take publication date into account as a result, but analyzing the metadata could provide

interesting information.

One of the clearest next steps for our allusion work is entity linking: where we take the

detected named entities and attempt to link them to a knowledge base, such as Wikipedia.

Allusions may provide challenge since (unlike in other domains) poetry does not usually

explain any context of entities that are mentioned. Other classical sequence tagging problems

will be interesting to look at in poetry, but require some deeper linguistic thought: how do

parts of speech apply to poetry?

Our retrieval work is fairly preliminary, but some obvious improvements would be to

provide faceted search: if a user types in love poems, offer commonly-co-occuring terms as

options for refining their search. Making our data and search system available to digital

humanists will likely generate large, expert queries that will be exciting to support in both

an effectiveness and efficiency context.

One future direction for our retrieval corpus is to consider what it would take to build a

recommendation system for poetry. Not only will this require new truth data collected by

annotators, this will potentially require knowledge of structure, central theme, and other

poetic concepts. Users may find poems interesting if they are humorous, or maybe if they are

very serious. It is likely that emotion detection and data will be more useful for this kind of

task. It would be interesting to see if co-publication of poetry can be a useful starting dataset

for this work: poems published in the same book could be thought of as being selected by

a single user (the author) and may even be useful for evaluation if data sparsity can be

overcome.

Another computer science domain that might find our dataset interesting is in research

on speech synthesis: we do not think current algorithms are capable of reading the variety of

poetry meters, languages, and style available in our collection. Making this corpus available

as audio files with higher levels of fidelity would make poetry more accessible.
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We expect the digital humanities to be most interested in this work. Using our poetry

datasets, we can now study the popularity of older poetry (at least as seen through the

perspective of publishers) by analyzing the results of our duplicate detection on larger sets.

Poetry-specific phenomena can be studied: using our NER system, metaphor and simile could

be identified and analyzed across millions of poems. Poems about specific historical events

could be found and curated to better understand historical events and human sense-making.

For these domains and more, retrieval will be the critical task to make sense of computational

analysis and to provide the ability to curate forgotten collections of poetry.
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