1942

Study of defense training in Hartford, Connecticut.

Marshall E. Knowlton

University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
STUDY OF DEFENSE TRAINING IN HARTFORD CONNECTICUT

by

MARSHALL E. KNOWLTON

A PROBLEM SUBMITTED AS PARTIAL FULFILLMENT FOR
THE DEGREE OF MASTER OF EDUCATION
MASSACHUSETTS STATE COLLEGE
AMHERST, MASSACHUSETTS
1942
TABLE OF CONTENTS
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index of Figures</td>
<td>v</td>
</tr>
</tbody>
</table>

Chapter I

<table>
<thead>
<tr>
<th>Introduction</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Job Training</td>
<td>3</td>
</tr>
<tr>
<td>(2) Local Committees</td>
<td>5</td>
</tr>
<tr>
<td>(a) Fact Finding</td>
<td>5</td>
</tr>
<tr>
<td>(b) Job Analysis</td>
<td>7</td>
</tr>
<tr>
<td>(c) Public Relations</td>
<td>8</td>
</tr>
<tr>
<td>(d) Finance</td>
<td>8</td>
</tr>
<tr>
<td>(e) Job Training</td>
<td>8</td>
</tr>
<tr>
<td>(3) Education and Industrialists</td>
<td>9</td>
</tr>
<tr>
<td>(4) Objectives of this training</td>
<td>12</td>
</tr>
<tr>
<td>(5) Organization of Training Center</td>
<td>13</td>
</tr>
<tr>
<td>(6) Survey of Industry</td>
<td>14</td>
</tr>
<tr>
<td>(7) Selection of trainee by the State employment service</td>
<td>16</td>
</tr>
<tr>
<td>(8) Mechanical Aptitude Tests</td>
<td>17</td>
</tr>
<tr>
<td>(9) Approval of applicants by prospective employers</td>
<td>18</td>
</tr>
</tbody>
</table>

Chapter II

Registration of trainee at training center	20
Rules for trainee	22
The course of study	25
(a) Measuring	25
(b) Reading Micrometer	25
(c) Machine operations 28
(d) Related work 50
(e) Reference to machine tools in Shop Theory 52
 1. Milling Machine 52
 2. Shaper 52
 3. Lathe 53
 4. Drill Press 55
 5. Use and care of tools 57
 6. Safety rules 61
 7. Heat treatment 62
(f) Blue Print Reading 64

Chapter III
 1. The combined results of two training centers 69
 (a) General Machine 104 69
 (b) General Machine 105 69
 1. Nationality 70
 2. Birth place 72
 3. Age 73
 4. Education 74
 5. Home address 75
 6. Employment 80
 7. Citizenship 76

Chapter IV
 1. Course of study for Senior High School 82
(a) Pre-Apprentice 82
(b) Pre-Vocational 83
(c) General Industrial Arts 84

2. Objectives 85

3. Machine Shop 86
 (a) Shop work 3. 90
 (b) Shop work 4. 91
 (c) Shop work 5. 92
 (d) Shop work 6. 93
 (e) Shop work 7. 94
 (f) Shop work 8. 96

4. Our State Program 103

5. The development from the bottom up rather than from the top down procedure. 103

6. A plan advanced under the leadership of the State Department of Education. 105

7. Trade Industrial 106

8. Industrial Arts 106

9. The Staff for this program 106

10. Conclusion 107
INDEX OF FIGURES

FIGURE I Application Blank 20
FIGURE II Release 21
FIGURE III Chart for Measurement 27
FIGURE IV Blue Prints of Operations (1 - 21) 28 - 48
FIGURE V Instructor's Record Card 67
FIGURE VI Final Record Card 68
CHAPTER I

INTRODUCTION

In 1939 a group of manufacturers asked the State Government to help them find employable men and women. With the large group of unemployed people living in and around Connecticut it seemed impossible that employers were without workers.

Committees were set up to investigate the possibility of training groups to meet the needs of Industry. It was found a workable plan to use the State Trade Schools during their off hours, to train the needed workers. This plan was based upon 200 hours training for those who were found to have some mechanical ability. The training consisted of a General Machine Shop course.
Job Training has been under way in Connecticut since November 1939. Originally sponsored by Governor Raymond E. Baldwin as an effort to solve the state's unemployment problem, and the first program of its sort to be launched not by the Government, but by public-spirited private business men and manufacturers with the State Government's cooperation, the present national defense emergency with its crying need for trained workers has catapulted Job Training.

What is Job Training? This plan for training workers is not a Government Project. It is based upon the American principle of community thought and community action the three hundred year old tradition. Since earliest times, "The Armory of the Nation, Connecticut" has supplied arms, munitions and supplies to the country in times of need. Washington's armies were supplied with guns and ammunition from this state.

The Connecticut General Assembly, on March 30, 1939, adopted an act authorizing the Governor to appoint a commission to study employment. This commission, headed by Carl A. Gray, of Farmington Connecticut, through whose efforts and under whose sponsorship "Job Training" has been evolved. Mr. Gray serves without pay.

The local situation must be taken into consideration in every phase of this work. It's for the localized, specialized industries that this plan was inaugurated.
The shortage of skilled help in the local plants and our large unemployment lists made this plan possible.

The State Commission set up a state employment agency, which registered all unemployed people in the state. If an actual head count is impractical, this survey may be made on a statistical basis, using commonly employed and accepted cross-sectional methods. This has been the procedure used by the commission.

To obtain the complete picture, this survey is broken down into occupational groups, first for the State as a whole, then by individual localities.

While registrations at State employment offices do not necessarily reflect accurately the total unemployment, nevertheless they supply a valuable cross section. From this cross section as a base, additional statistics, as highly localized as may be necessary, may be built up.

The Connecticut survey shows the problem of "Youth" and the "Skill-Rusty" older worker. It was found that of the employable unemployed, approximately one-third are young men and young women between the ages of 16 and 25; untrained and inexperienced, few of whom, indeed, have ever held a "real" job in their lives.

The Owen D. Young Commission made public a report confirming Connecticut's findings and stating the figure to be 33 1/3% of unemployed youth.

Another 33 1/3% were found to be the "Skill-Rusty"
workers, older people formerly employed, but now without work.

Each local committee, then makes a local survey. This is a group of diversified citizens from all types of business including manufacturing, industrial and commercial fields, members of civic groups, members of the American Legion, members of labor organizations, members of educational boards and members of the State Employment Services. As many sub-committees of this committee as are necessary for the community are made up. Because the needs of one community vary from the needs of another, no set plan is insisted upon other than this general outline.

The chairman of the local committees serve on a State Advisory Council which also includes the Commissioner of the State Board of Education, the Director of the State Employment Service, the Commissioner of the Department of Labor, the president of the State Manufacturers' Assoc. representatives of labor, the chairman of the State Development Commission, executive vice-president of the State Chamber of Commerce, Commissioner of State Welfare and the chairman of the State Apprenticeship Council.

Figures as to local employables, as compiled by the local committee in each locality, include age, sex, occupation and previous experience of each individual. Employables are grouped by major industrial classifications such as manufacturing, construction and trade. The
industrial group shows the number of skilled, semi-skilled, unskilled, inexperienced youth, professional, technical, supervisory, sales persons, clerical, rehabilitation and retraining cases and unemployables. The breakdown in classification shows that employables are of all types and not from one group. We are too inclined to the premise all employables can be absorbed by the manufacturers and that all have had manufacturing experience, which is not true. In Connecticut less than 42% of the unemployed have had some previous manufacturing experience - the balance come from other fields. Therefore, the responsibility for re-employment should not rest entirely on the shoulders of the manufacturers.

The formation of a Fact Finding Committee, Job Analysis Committee, Public Relations Committee, Finance Committee, and Job-Training Committee may be of assistance to the local committee. The administration of the various committees can be carried out through the existing facilities and personnel of local organizations - industrial, commercial, charitable, municipal, civic, the State Employment Service, American Legion or whatever the local community has in the way of organizations.

After receiving the general breakdown of employables for their locality the Fact Finding Committee makes a further analysis of individual aptitudes. In this way they know what the abilities and backgrounds of the
individuals are.

The Job Analysis Committee makes a study of the employment requirements of the community. It analyzes the needs of local industry, dovetailing industrial, agricultural and general business requirements, thus obtaining a complete and detailed picture of current and anticipated demands for workers. Public relations committee carries the responsibility for utilizing every appropriate media of publicity and for interpreting the work of the local committee to employer, employees and the unemployed rests upon this committee. It is their function to interpret the value of jobs in industry, to show parents the value of preparation for useful jobs. For example, the interpretation of the white collar job versus the job in the shop; the fact that the management selects its foremen, superintendents, plant managers, etc., from the men who know tools who are trained to work with hands as well as head. Too often parents and particularly those who have worked in shops themselves are ambitious to have sons and daughters, who have completed high school and even college, immediately jump into a white collar job in preference to jobs that will give fundamentals and a basic training.

The Job-Training Committee is a sub-committee that sets up the course of study job-training. In many instances, the local committee as a whole may wish to take over this
function. However, it will be found practical to set up a sub-committee of a few qualified members that will be able to work directly with local industry and the local and State school authorities in setting up and administering a curriculum.

A sub-committee also on finance may be set up where local conditions are such as to necessitate community efforts to raise funds.

"Job-Training", by which is meant, in its broad sense, vocational training, is no new thing, although, by many educators it perhaps too long has been considered the step-child, the ugly duckling of our educational system.

The secondary schools have recognized in a small way the need for vocational education in the development of commercial courses but these commercial courses have been in one or two specific fields. For example, anyone who hires a secretary expects that she already knows how to take shorthand and knows how to type. By the same reasoning, training in other vocations should be given in the schools which would allow students to have sufficient knowledge and ability to qualify them as beginners in various industrial and commercial pursuits. This has been recognized in Connecticut in its State Trade School system. The need, however, continues greater than the provision. Eighty per cent of our high school graduates go directly
to jobs (if they can find them); only 20 per cent continue on into college.

Jobs of educators and jobs of industrialists are quite similar in several important respects. The educators and industrialists are required to take certain raw material with which to work, according to prescribed formula. They both produce a product which must have a market or there will be no sale. However, the industrialist as a rule analyze their market for his product before he goes into production. By the same reasoning those in the educational field should analyze their markets (job-analysis, job turnover) in order so to shape their curricula that students upon graduation can be sold. If a community is made up of industrial concerns, industrial jobs will predominate; if it is a farming community, farm jobs predominate; if it is a combination of manufacturing, commercial, merchandising and farms, banks and insurance companies, all the fields must be carefully studied to meet the community requirements.

Both manufacturers and educators use raw material supplied by others over whom they have no control. But there is one important difference, namely, that the manufacturer can reject the raw material supplies if it fails to meet rigid specifications. Having accepted the raw material, the educator, like the manufacturer, processes it: the educator according to a prescribed curriculum, the manufacturer according to prescribed operation sheets
or engineering specifications. In this phase of the process the experience and problems of the manufacturer are in some measure simpler and more definite than those of the educator. The manufacturer is using raw material of his own selection, with machines and appliances of known and standardized effect; the educator is dealing with the infinite variety of human material, using books and theories, always with a wide margin for speculation as to their probable effectiveness.

A possible weakness in the tools used by the schools is the lack of sharpening them to meet current conditions in a changing world. (The dies used in the Model T Ford are perhaps now on the junk pile or in the Smithsonian Institute). Having passed through the early stages in education and manufacturing the same finished product is now ready for the final touches or, to use a manufacturing term, the assembly line. In the education field then comes the final line of progression, the final examinations and graduation; in the manufacturing field the final inspection and testing. The product is then ready for market or for a life work of usefulness and service. The next problem is to get the product into the hands of the ultimate users and here is where the paths of the educator and industrialist diverge.

The educator then declares to the world, "Here they are" and on a given day in June turns out hundreds or
or thousands of a finished human product, stating that all has been done that can be done for them. The educators then say to the world, "They are yours now to do with as you will, to take and use and develop and make into leaders of men if you can. If they don't fit, if they are not prepared for the American way of life, that is their misfortune, but we must carry on with a new class, so the community, the parents, the employers, the taxpayers must worry about this class from now on". If the educator's product is not acceptable, still he carries on, producing more misfits. In manufacturing if one does not sell the product successfully the manufacturer is wrong and is eventually forced out of business unless he revamps the product to meet the demand.

It is necessary for those in the educational field to work in close harmony with business and industrial leaders in their communities. The educator should know the needs of the users of his product; thereby he is enabled to plan his educational program, the processing of the product, to meet those requirements.

This, the planning of an educational program exactly to meet the specific requirements of a known demand for workers, is the heart of Job-Training.

JOB-TRAINING is based upon specific training, highly intensified, upon specific machines in connection with which a known local demand, current or expected for workers
exists. Such training may apply all the way from the heavy machine tool worker to the girl being trained for needlework. In Connecticut, job training classes have been set up in Bridgeport for airplane riveters, in Hartford for fileers on machine guns, in Manchester for sewing machine operators, in Meriden and Hartford, Bridgeport and New London, Manchester, Ansonia, Bristol, Willimantic and other centers for general training on machines in use in common machine shop practice.

In each community, the local committee organizes the job training school. In this it has the cooperation of the State Department of Education, the local Board of Education, and other State and local authorities.

The objectives of training are to familiarize the trainee with measuring tools, simple blueprint reading, and to furnish some experience on machines, the idea being not to develop skills so much as to develop an appreciation of the necessity for accuracy.

The selection of the trainees is placed in the hands of the State Employment Service. All applicants are interviewed by this service and tests are given in addition to surveying the trainee's previous school and employment record.

When the trainee enters the school, he is given a sheet of instructions. This sheet specifically advises
the trainee that the completion of this course does not guarantee him a job.*

THE HARTFORD SCHOOLS**

In setting up a job-training school, all one needs is the will to act. The first job-training school was set up in Hartford in four days. The first step was to call upon the manufacturers who are members of the local committee to donate instructors, which they willingly did and paid for. These men were practical men right from shop floors. The second step was to get in touch with Dr. Alonzo Grace, State Commissioner of Education, and Mr. A. S. Boynton, the State Vocational Director in charge of Trade Schools. The third step was to call a meeting of the instructors loaned by industry and to work out a curriculum which would give prospective students the basic training for the job openings which were known definitely to exist through job analysis.

The curriculum was set up and the next question was where to locate the school. The manufacturers offered a building and some machinery. However, because it seemed the more practical thing to do, the State Trade School in Hartford finally was decided upon. Funds were made available for this first school by Governor Baldwin from his contingent fund.

*See release application

**Hartford Public High School with 3 shops - capacity 80 trainees
Bulkeley High School 1 shop - " 40 "
Weaver High School 1 shop - " 40 "

One instructor is allowed for every ten trainees.
In order not to interfere in any way with the regular Trade School day and evening classes, the hours of the job-training school were set from 11:30 o'clock at night to 7:30 o'clock in the morning.

In the Hartford Job-training school, a 200-hour course of intensive training was set up, eight hours a night, forty hours a week. This as a basic course proved so successful that all of the other job-training schools since established in the State to give general machine shop training have patterned their curricula upon it.

The curriculum follows:

<table>
<thead>
<tr>
<th></th>
<th>Power Saw</th>
<th>1 hour(s)</th>
<th>Bench</th>
<th>16 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lathe</td>
<td>72</td>
<td>Cy'l. Grinder</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bench Lathe</td>
<td>4</td>
<td>Shaper</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Surface Grinder</td>
<td>24</td>
<td>Miller</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Drill Press</td>
<td>8</td>
<td>Tool Grinder</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Internal</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grinder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All industries were asked to fill out the following questionnaire for the purpose of informing the committees of their status.

JOB-TRAINING SURVEY

Are you at the present time training regular apprentices in your plant? **YES**......**NO**.......

If so, how many?

Are they part time trade school? **YES**......**NO**.......

When will they have completed training? (How many in each?) 3 months.....; 6 months.....; 9 months.....; 12 months.....(etc.)

If you have not established such a plan, do you contemplate doing so? YES.....NO.....

If so, how many can you accommodate?...

Irrespective of your answer above, have you established any course for learners or for specialized training on certain types of machines? YES.....NO.....

What are they, and how many in each?..................

If you are not training a surplus for future demand, how many men could you train for the anticipated increase caused by the defense program?..

Are you giving supplemental training to men released from the special night shift at the trade school? How many?........ Can you absorb any more?.....

Have you any space available in your factory that could be used for training purposes by the manufacturers as a group project under a group expense burden?........

If so, have you any machinery available for this training? YES.....NO.....

What machinery?..................................

If you have not the space but can lend the machinery, please indicate what types, and how many machines.

If you anticipate being called upon to manufacture something that will be needed in the defense program and have no physical capacity for training, what kind and how many workers do you anticipate you will need in the twelve months?.................................

Do you know of men available and desirable for training who have made application to your plant and whom you are not now able to accommodate? YES.....NO.....

Have you any men on your staff with instructional ability who could be spared and used under a group project of training? YES.....NO...... How Many.........
This statement outlines the procedure by which men are selected in Hartford for defense training in a beginning machine operator's course of approximately two hundred hours. A similar procedure is in operation in most of the Connecticut cities in which defense training is conducted.

The schools operating as defense training centers do not consider direct applications for training. All trainees are selected and placed by the State Employment Service.

The selective procedure includes the following three phases:

1. Preliminary screening of applicants by the State Employment Service.
2. Mechanical aptitude testing of applicants by the Employment Service interviewers.
3. Approval of applicants for training by prospective employers.

Preliminary Screening

From all applicants for defense training, the State Employment Service chooses for their further consideration those who apparently meet the known but varying requirements of the local employers in defense industries. Such requirements may include citizenship, age, height, weight,
education, experience in related occupations, apparent
mental alertness, probable physical vitality or stamina,
personality traits, and so forth.

Mechanical Aptitude Testing

The men accepted for further consideration are
scheduled by the State Employment Service for mechanical
aptitude testing. In Hartford, and three other Connecticut
cities, the tests are given by the Adult Guidance Service.
(Some branch offices of the State Employment Service, in
cities which do not have Adult Guidance Services, administer
their own mechanical aptitude testing programs.)

All men referred to the Adult Guidance Service, to
be tested for enrollment in defense training schools, are
given a battery of three mechanical aptitude tests. These
are the Detroit Mechanical Aptitude Examination, the
MacQuarrie Test for Mechanical Ability, and the Revised
Minnesota Paper Form Board Test. In computing the
examinee's composite percentile rank in mechanical aptitude,
the above tests are given weights of 5, 3, and 3 in the
order named.

The results of the tests are reported to the State
Employment Service. The report on each individual gives
his percentile rank on each test, and the quartile in
which he ranks as shown by his composite percentile rank.
Men who stand in the two upper quartiles, (or above the
median composite percentile rank) are considered to have
"passed".
For those who may not be familiar with the tests used, perhaps it should be stated that they are presumed to measure primarily the individual's innate mechanical aptitude or capacity (sometimes defined as general mechanical intelligence), and not mechanical ability based on experience. In other words, trade tests measuring the degree of acquired mechanical ability are not used in this program, as men having such skills do not need the "pre-employment" type of beginning training with which this selective procedure is concerned.

Incidentally, the Adult Guidance Service is jointly sponsored by the Works Progress Administration, the State Department of Education, and the Hartford Board of Education. The W. P. A. pays the salaries of the staff, but has delegated supervision of the staff and program to the State Department of Education. The Hartford Board of Education provides housing and supplies.

Such of the mechanical aptitude tests given by the Adult Guidance Service as are used for selecting men for defense training, are purchased from Federal Defense Training funds allocated to the Hartford Board of Education. The Hartford Board also supplements the W. P. A. staff with three test scorers and clerks paid from federal defense training funds.

Approval of Applicants by Prospective Employers

Applicants for defense training who have been screened
by the Employment Service as probably acceptable, and who have then "passed" the mechanical aptitude tests, are next sent to one or more employment managers of local defense industries for approval. Only one approval is required. If necessary, an applicant will be sent to as many as four different employment managers, in search of one who will approve him, before he is rejected for training. When an applicant favorably impresses an employment manager, the company gives him a physical examination.

It is understood that a company's approval for training does not constitute a promise to hire the individual when he has completed the training. In practice most "graduates" are employed by the companies which approved them. However, if the original approving company does not happen to need a man when he completes his training, placement in another local company is assured.

The names of applicants who have been approved by an employment manager are placed on a waiting list for training. Whenever a trainee completes his training he is certified for placement to the Employment Service which then fills the vacancy in the training center from its waiting list of approved applicants.
CHAPTER II

Course of Study - Training Center
(3) Local address

(4) Telephone No.

(5) Race and sex

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Single</td>
</tr>
<tr>
<td>Negro</td>
<td>Married</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

(6) Marital status

(7) Home address, if different from (3)

(9) City or town

(10) State or country

(11) How old were you on your last birthday?

(12) Nationality of Father

(13) Mother

(14) Social Security number

If of foreign birth, answer the following:

(15) How long have you lived in the United States? years

(16) Are you a naturalized citizen?

(17) If naturalized, what is your certificate number?

(18) What is the date of your certificate?

(19) What court issued your certificate?

(20) If not naturalized, have you received your first papers?

(21) If so, give date on which issued

(22) Give name and address of court

EDUCATIONAL RECORD

<table>
<thead>
<tr>
<th>In elementary and secondary school</th>
<th>In college</th>
<th>Graduate work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

(23) Circle highest grade completed

(24) Name of last elementary school, secondary school, or college attended

(25) What course did you take?

(26) Have you attended a trade or vocational school?

(27) If so, number of months in attendance

(28) Name and address of trade or vocational school attended

(29) Name of trade or vocation for which trained

(30) Date of leaving

EMPLOYMENT RECORD

PRESENT EMPLOYMENT

If now employed, check and give details below

(31) WPA NYA resident project NYA nonresident project CCC Other employer

(32) Name of employer or project

(33) Date employed

(34) Wages or salary

<table>
<thead>
<tr>
<th>$</th>
<th>per</th>
</tr>
</thead>
</table>

(35) Address of employer

(36) Your duties and specialties

PREVIOUS EMPLOYMENT

List most important

<table>
<thead>
<tr>
<th>(38) Name of employer</th>
<th>(39) Dates</th>
<th>(40) Wages or salary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>per</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(41) Address of employer</th>
<th>(42) Your duties and specialties</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(44) Name of employer</th>
<th>(45) Dates</th>
<th>(46) Wages or salary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>per</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(47) Address of employer</th>
<th>(48) Your duties and specialties</th>
</tr>
</thead>
</table>

| (49) Kind of employment | |
|-------------------------| |

1. If employed by WPA, NYA, or CCC, give title of project.
RECORD OF DEFENSE TRAINING

<table>
<thead>
<tr>
<th>(50) Date enrolled</th>
<th>(51) Program symbol</th>
<th>(52) Name of course taken</th>
<th>(53) Code symbol</th>
<th>(54) Date completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSES DISCONTINUED BEFORE COMPLETION:

<table>
<thead>
<tr>
<th>(55) Date discontinued</th>
<th>(56) Course symbol</th>
<th>(57) Name of course</th>
<th>(58) Code symbol</th>
<th>(59) Reason for discontinuing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLACEMENT AND FOLLOW-UP RECORD

<table>
<thead>
<tr>
<th>DATE</th>
<th>OCCUPATION (61)</th>
<th>EMPLOYER (62)</th>
<th>ADDRESS OF EMPLOYER (63)</th>
<th>DUTIES OF EMPLOYER (64)</th>
<th>WAGES OR SALARY (65)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(66) If trainee was not placed, give details of placement efforts:

- Referred to placement office. Additional training recommended.
- Referred to WPA. Other (Describe efforts)

FOLLOW-UP INFORMATION
Each trainee must sign the following release before starting work in any shop.

CONNECTICUT STATE DEPARTMENT OF EDUCATION

REGULATIONS FOR NATIONAL DEFENSE TRAINING COURSES

NOTICE TO TRAINEES.

In connection with the course you are now starting, the following items are specifically called to your attention.

1. The completion of the course DOES NOT guarantee that you will secure a job.

 Every effort will be made, however, to secure work for you.

2. The first week is to be considered a probationary period. If at the end of this period you have not shown sufficient progress, you will be dropped from class and another called to fill your place. For this reason it becomes necessary for you to give us your best effort right from the start.

3. It is to be understood that this course does not aim to produce skilled tool-makers and machinists, nor should you expect to secure the type of work done by these tradesmen when entering industry. Its purpose is to give such training as will enable a person to have some small understanding of shop processes and an appreciation of the accuracy required in machining operations.

4. The School is not responsible for any injuries which may occur to members of the class.

 Date ______________________

 I have read the foregoing items and I hereby release the School from any responsibility in case of an accident to my person.

 Signed _____________________
Upon entrance, time is taken to explain all rules and regulations being sure each trainee fully understands them.

RULES FOR TRAINEES

at

Hartford Public High School, Defense Training Program

1. Eating will be permitted in Room M-6 only between 7:30 and 8:00 P. M. (3:30 and 4:00 A. M.), (Lunch period.) Smoking allowed in basement, 7:30 to 8:00 P. M. (3:30 to 4:00 A. M.). **Absolutely no smoking allowed anywhere else in the building or at any other time.**

2. Start work at 3:30 P. M. (11:30 P. M.) and work until 7:25 P. M. (3:25 A. M.), at which time all persons having micrometers return them to the tool crib and get your check. All micrometers must be turned in at this time.

3. Start work again at 8:00 P. M. (4:00 A. M.). Those that turned micrometers in at 7:25 P. M. (3:25 A. M.) and will need them for the remainder of the period will get them out on checks again. Work until 11:10 P. M. (7:10 A. M.). Turn in all tools. Make sure that you have 10 checks, then turn them in to tool crib boy. You must then return to the room in which you were working and clean the machines you were operating.

4. Washing will not be permitted before 7:25 P. M. and 11:20 P. M. (3:25 A. M. and 7:20 A. M.). You must wash in the room in which you have been working.
5. No whistling or loud talking permitted.

6. Do not sit on benches during working hours.

7. The reading of newspapers or magazines is not allowed.

8. The reading of textbooks will be allowed if permission is first obtained.

9. Anyone staying out 2 days without informing the chief instructor will automatically be dropped. You must call us each day you are out or notify us in some way. The telephone number is 2-5053.

10. Insubordination is cause for immediate dismissal from the course.

11. You are to work on the machine that has been assigned to you and on no other unless the instructor so directs.

12. You will not leave the building before 11:30 P. M. (7:30 A. M.) without permission.

13. All trainees must be ready to go to work at 3:30 P. M. and 8:00 P. M. (11:30 P. M. and 4:00 A. M.).

14. Each trainee will be assigned a check number. The tool crib boy keeps 10 brass checks on a ring to correspond to your number. Ask him for your checks, count them to make sure you have 10. Before leaving for home, count your checks to make sure you have 10, then turn them in to the tool crib boy, as the next shift uses these same checks. You are responsible for all tools out on your checks.

15. Report to instructor before starting to work. Do not start any machine without instructor's permission.
16. The odor of alcoholic breath is not permitted. The first time you will be sent home. The second time you will be dismissed.

17. Trainees are not to leave the room they are assigned to without the permission of the instructor.

SAFETY RULES FOR TRAINEES

1. Never wear rings or wrist watches when running a machine.

2. Do not oil any machine while it is running.

3. Keep hands off all moving parts of a machine.

4. Never put your hands on a moving belt. The belt hooks may tear your hands; or you may get your hand caught between the belt and the pulley.

5. Avoid reaching over a machine while it is running.

6. Do not wear loose garments around a machine. They may get caught.

7. Do not leave machine while it is running; shut it off.

8. Roll your sleeves up when working on machines. Take loose clothing off.

9. Never start a machine until told to do so by the instructor, even though you have run the machine previously.

10. When drilling or reaming have a firm grip on the drill jig or part.

12. Remove chuck key from chuck before starting machine.
13. Keep cloth or waste away from moving parts.

Ten small steel objects are measured by the trainee with a 6" scale and his figures recorded in the following table. With the use of a decimal chart the fractional measurements are changed to decimal measurements. This gives him the use of charts.*

The reading of a micrometer is now taught and the student proceeds to measure the steel objects with his micrometer, recording the measurements in the proper space on this table.

Reading the Micrometer

The Commercial micrometer consists of a frame, the anvil or fixed measuring point, the spindle which has a thread cut 40 to the inch on the portion inside the sleeve or barrel and the thimble which goes outside the sleeve and turns the spindle. One turn of the screw moves the spindle 1/40 or .025 of an inch and the marks on the sleeve show the number of turns the screw is moved. Every fourth graduation is marked 1, 2, 3, etc., representing tenths of an inch or as each mark is .025 the first four means .025 x 4 = .100, the third means .025 x 4 x 3 = .300.

The thimble has a beveled edge divided into 25 parts and numbered 0, 5, 10, 15, 20 and to 0 again. Each of these mean 1/25 of a turn or 1/25 of 1/40 = 1/1000 of an inch.

*See chart page 27.
To read, multiply the marks on the barrel by 25 and add the graduations on the edge of the thimble. In the cut there are 7 marks on the sleeve and 3 on the thimble so we say $7 \times 25 = 175$, plus $3 = 178$ or .178. In shop practice it is common to read them without any multiplying by using mental addition. Beginning at the largest number shown on the sleeve and calling it hundreds and add 25 for each mark, we say in the case show 100 and 25, 50, 75 and then add the numbers shown on the thimble 3, making .178 in all. If it showed 4 and one mark, with the thimble showing 8 marks, the reading would be $400 + 25 + 8 = 433$ thousandths or .433.

Taken from: American Machinists' Handbook Pages 356 - 7
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction</td>
<td>Decimal</td>
<td>Micro-meter</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART NO. 2001 PART NAME Adapter DEPT. NO. S. T. S.
MATERIAL Cutting off stock OPER. NO. 1 SHEET NO. 1 NO. SHEETS 24
TYPE OF MACHINE Power Saw

DESCRIPTION OF OPERATION NAME OF TOOL

Place bar stock 2\(\frac{1}{2}\)" diameter in 6" scale
jaws of vise allowing the stock to project beyond saw blade 7/8".

Tighten vise and throw in clutch of the machine.
Make sure that compound flows on saw blade while it is cutting off the stock.

Hold the stock that is sawed off in a bench vise and with course file remove burrs from the work.
Hold the work in a three jawed chuck
Place drill chuck in the tail stock and center drill the work.
Grab a 9/32 drill in tail stock chuck and drill hole thru the work.
Remove the tail stock chuck and place center in the tail stock.
Place a 15/16 drill in a taper shank drill holder
Keep drill holder against center with the tool post and drill hole in work.
With boring tool bore hole to fit the .990 - .996 plug gage.
Hold 1" reamer with a dog keeping the reamer in the tool post
With the tool post and drill hole holder or dog.
With the boring tool, bore hole to fit the .990 - .996 plug gage.
Place the work on an arbor, entering the small end of the arbor in the machined side of the work.

Make the work tight on the arbor in an arbor press.

Place the dog on the large end of the arbor and suspend the arbor between centers on the lathe.

Rough turn the work to 2 27/64", caliper measurement, using a diamond point tool.

Finish turning to 2.390 - 2.392 3" micrometer.

Remove diamond point tool insert facing tool.

Have the tool slightly below the center with the end square to the arbor.

Face clean the side of the work.

Reverse the arbor and face work to 25/32".

Face to 0.0002" using a micrometer.

Reverse the tool slightly below the center with the end square to the arbor.

Face clean the side of the work.
Hold shoulder arbor in a \(\frac{3}{8}\)" spring collar in spindle of the lathe

Place the work on the arbor making it tight with the nut.

With a file, file a \(\frac{3}{64}\)" radius on the flange of the work to fit the \(\frac{3}{64}\)" radius gage.

Reverse the work and file a \(\frac{3}{64}\)" radius on the opposite side of the flange to fit the \(\frac{3}{64}\)" radius gage.

With emery cloth polish radius

Remove the work from the arbor.
<table>
<thead>
<tr>
<th>DESCRIPTION OF OPERATION</th>
<th>NAME OF TOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab the work by the flange in a three jawed chuck.</td>
<td>3 jawed chuck</td>
</tr>
<tr>
<td>Set the compound to the right at 45 degrees</td>
<td>Draw back</td>
</tr>
<tr>
<td>Turn a chamfer in the 1" hole leaving the mouth of the work measuring 1 1/16" remove burrs with a scraper.</td>
<td>Tool post</td>
</tr>
<tr>
<td></td>
<td>Tool holder</td>
</tr>
<tr>
<td></td>
<td>Screw driver (medium)</td>
</tr>
<tr>
<td>Set the compound 45 degrees to the left and turn a 1/16" chamfer on the hub.</td>
<td></td>
</tr>
<tr>
<td>Reverse work in the chuck holding it by the hub. Set compound 45 degrees to the right and turn a chamfer in the 1" hole leaving the mouth of the work 1 1/16".</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of No. 5 Chamfer](image)
Measure the work with a micrometer and then place the work upon the magnetic chuck, having the flange on the work on the surface of the chuck.

Turn on chuck switch. Make certain that the work is held on the chuck. Start wheel.

Bring wheel down until it touches the work and grind off the face of the hub until it measures .750" ± .002
Place work on the drill jig stud flange first and make work tight with the screw.

Insert 15/64" drill bushings into the drill-jig holes.

Grab 15/64" drill in drill chuck and drill the two holes. Lubricate drill with cutting oil.

Remove drill bushings and insert 1/4" reamer bushings in drill jig.

Grab 1/4" reamer in drill chuck and ream the two holes. Lubricate the reamer with cutting oil.

Lubricate drill with cutting oil.
PART NO. 2001 PART NAME Adapter DEPT NO. H.S.T.S.
Burring
MATERIAL holes OPER. NO. 8 SHEET NO. 1 NO. SHEETS 24
TYPE OF MACHINE Bench

DESCRIPTION OF OPERATION NAME OF TOOL

With a file and a three cornered scraper remove the burrs on the two holes and try the holes with a 1/4" plug gage. #8 plug gage
PART NO. 2001 PART NAME Adapter DEPT NO. H.S.T.S.
Drilling for
MATERIAL tapped holes OPER. NO. 9 SHEET NO. 1 NO. SHEETS 24
TYPE OF MACHINE Drill press

<table>
<thead>
<tr>
<th>DESCRIPTION OF OPERATION</th>
<th>NAME OF TOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place work on the drill jig stud flange first.</td>
<td>Drill jig Op. #9</td>
</tr>
<tr>
<td>Line the holes in the work with the pin on the jig and tighten with the screw.</td>
<td></td>
</tr>
<tr>
<td>Grab a No. 7 drill in the drill chuck and drill four holes through the flange. Lubricate the drill with cutting oil.</td>
<td>Cutting oil can #7 (.201) drill</td>
</tr>
<tr>
<td>Loosen screw and remove the work.</td>
<td></td>
</tr>
</tbody>
</table>
PART NO. 2001 PART NAME Adapter DEPT NO. H.S.T.S.
Recessing and
MATERIAL burring OPER NO. 10 SHEET NO. 1 NO. SHEETS 24

TYPE OF MACHINE Drill press

<table>
<thead>
<tr>
<th>DESCRIPTION OF OPERATION</th>
<th>NAME OF TOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place work in the C’ sink fixture flange first, tighten work in the fixture with the set screw.</td>
<td>C’ Sink Fixture #10</td>
</tr>
<tr>
<td>Grab a 17/64” drill in the drill chuck and recess the four No. 7 holes to a depth of 1/32”</td>
<td>17/64” drill</td>
</tr>
<tr>
<td>Loosen screw, remove work and repeat operation on opposite side of the flange.</td>
<td></td>
</tr>
<tr>
<td>With a file and a scraper remove the burrs.</td>
<td></td>
</tr>
</tbody>
</table>

RECESS 1/2 DEEP 1/2 DRILL 4 HOLES

NO. 10 RECESS TAPPED HOLES - BURR
Grab the work in a bench vise by the flange.

Enter a \(\frac{1}{4}'' - 20 \) tap
Check the tap for straightness with square.

Tap out the hole

Repeat the operation on the other No. 7 tapped holes.
Place the work on a 1" arbor and suspend it between the centers on the grinder.

Start the work and grinding wheel turning and bring the wheel up to the flange of the work.

Grind the flange of the work to a diameter of 2.375 ± .001

Stop the machine and remove the work.
Place the work on the fixture stud, flange first.

Line the 1" reamed hole with the pin and tighten the nut.

Throw in clutch on the shaper and remove the stock on the flange to fit the flush gage.

Loosen nut and remove the work. With a file remove the burr.

Repeat the operation on the other side of the flange.
Place the work on the stud of the fixture, flange first. Line the \(\frac{3}{4} \)" reamed hole in the work with the pin on the fixture tighten the work with the nut.

Start the machine and lower the wheel until it touches the work.

Grind the flat on the flange until it fits the flush gage.

Loosen nut remove work and with a file remove the burr.

Repeat the operation on the other side of the flange.
Remove chips from the fixture
Place the work on the stud flange first. Line the ½" hole with pin on the fixture.

Adjust the clamps and tighten the set screws.

Take out backlash on the cross feed and line the 0 on the dial with the 0 on the machine, then lock the table.

Start the machine, bring the work to the cutter and throw in the feed.

After making the cut, stop the machine, bring the table back, loosen the table lock, and move table in .033 with cross feed handle using set up gage.

After completing cut bring back work to starting position and

Milling fixture #15
½ side milling cutter

#15 set up gage

After completing cut bring back work to starting position and

St. 0.033
St. and
Mat. the
St. loc.
Chos flg

No. 15 MILL SLOTS
Clean the chips from the fixture place the work on the fixture stud flange first. Line the 1/4" reamed hole in the flange with the pin on the fixture.

Adjust and tighten the clamps.

Start the machine, bring work up to the cutter, throw in the feed and mill the recess.

Stop the machine, bring the work back, loosen the clamps and turn the work halfway around in the stud.

Repeat milling operation on the other side.
DESCRIPTION OF OPERATION

| Remove all chips from the fixture and place work on the fixture stud flange first. Line the ⅜" reamed hole on the flange with the pin on the fixture and tighten the screw. |
| Start the machine, bring the work up to the cutter, throw the feed and mill the side of the hub. |
| Stop the machine, bring the table back, index the dividing head 6 turns 9 holes on the 18 circle index plate and repeat the milling operation. |
| Continue operation until six sides have been milled on the hub. |

NAME OF TOOL

- #17 snap gage
- Milling fixture Op.#17
- Gage #17

Diagram:

No.17 Mill The Hexagon
PART NO. 2001 PART NAME Adapter DEPT.NO. H.S.T.S.
MATERIAL relief OPER.NO. 18SHEET NO.1 NO.SHEETS 24
TYPE OF MACHINE Shaper

DESCRIPTION OF OPERATION NAME OF TOOL
Place work on the fixture stud flange first. Shaping relief
Line the 3/8" reamed hole with the pin on the fixture, tighten fixture screw. Fixture Op.#18
Start the shaper and shape the 3/8 - 5/16 relief on the flange.
Scale measurement 6" scale
Loosen the screw and turn the work half way around lining the 3/8" reamed hole on the flange with the pin and tighten the screw.
Repeat operation on this side.
Place work on the magnetic chuck with flange resting on the surface of the chuck and the ground flat of the flange tight against the straight edge.

Throw in switch and make certain that the work is secure.

Start machine bring the wheel down until it touches the bottom of the slot. Move table of machine out until it touches the work.

Grind one side of slot clean then grind bottom of slot to fit the flush gage. Grind the other side of the slot to fit the Go gage.

Remove the work.
Hold the work in the fixture and make it tight with the set screws. Internal Grinding fixture Op. 20

Start the machine and enter the wheel in the hole. #20 plug gage
Bring the table of machine back until it touches the work.

Grind the hole to fit the Go plug gage.

![Diagram of a part with dimensions and labels](image-url)
PART NO. 2001 PART NAME Adapter DEPT NO. H.S.T.S.
MATERIAL Inspection OPER.NO.21 SHEET NO.1 NO.SHEETS 24
TYPE OF MACHINE Bench

<table>
<thead>
<tr>
<th>DESCRIPTION OF OPERATION</th>
<th>NAME OF TOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>With the blue print check</td>
<td></td>
</tr>
<tr>
<td>0 D on flange</td>
<td>#19 snap gage</td>
</tr>
<tr>
<td>0 D on hub</td>
<td>#19 flush gage</td>
</tr>
<tr>
<td>Width across the flats on the flange</td>
<td>#20 plug gage</td>
</tr>
<tr>
<td>" " " " " " hub</td>
<td></td>
</tr>
<tr>
<td>Thickness of the adapter</td>
<td>" " " flange</td>
</tr>
<tr>
<td>" " " flange</td>
<td></td>
</tr>
<tr>
<td>Width of the slot</td>
<td>#8 plug gage</td>
</tr>
<tr>
<td>Depth of the slot</td>
<td></td>
</tr>
<tr>
<td>Thickness of the relief</td>
<td></td>
</tr>
<tr>
<td>Length of the relief</td>
<td></td>
</tr>
<tr>
<td>Diameter of the hole</td>
<td></td>
</tr>
<tr>
<td>Tapped holes</td>
<td></td>
</tr>
<tr>
<td>Reamed holes</td>
<td></td>
</tr>
</tbody>
</table>

With the blue print check:
- 0 D on flange
- 0 D on hub
- Width across the flats on the flange
- Thickness of the adapter
- Width of the slot
- Depth of the slot
- Thickness of the relief
- Length of the relief
- Diameter of the hole
- Tapped holes
- Reamed holes

3" micrometers
2" micrometers
1" micrometer
3" micrometers
2" micrometers
OPERATION B-1

Special operation on Grinding Drills
Using for text "Handbook for drillers" published by the Cleveland Twist Drill Company.

In this operation we try to acquaint the trainee with the names of various parts and types of drills. The grinding of simple drills, speeds and feeds and angles of clearance, etc.

OPERATION B-2

Special operation on grinding tool bits
Using for text, "How to Grind Lathe Tool Cutter Bits" published by South Bend Lathe Works. Illustrations shown to trainee of various types of cutter bits.

OPERATION A-1

Special shaper work
Shaping to a shoulder

OPERATION A-2

Special shaper work
Shaping dove tails
HARTFORD PUBLIC DEFENSE TRAINING CENTER

General Machine Course

Outline of Trade Information

1st-4 hour session

1. Scale reading
2. Measuring sample blocks
3. Using outside calipers
4. Using and reading the micrometer
5. Grinding tool bits (information)
6. Arbors and mandrels (information)
7. Setting tool for lathe operation (information)
8. Reading Assignment - Burghardt - Pgs. 102-109 (Revised edition)

2nd-4 hour session

1. Shop Sketching
 (a) Alphabet of lines
 (b) 3-view projection
 (c) Methods of dimensioning
 (d) Making working sketches from models
2. Read Burghardt - Fgs. 74-95 and answer questions listed on attached question sheet #1 or question sheet #2 Pgs. 96-125 inclusive.
3. Discussion of answers to questions
4. Read "How to Run a Lathe" - South Bend Lathe Works

3rd-4 hour session

1. Sketching
 (a) Further application of sketching principles

3. Answer questions listed on attached question sheet #3 (Written)

4. Discussion of answers to questions.

4th-4 hour session

1. Sketching or blueprint reading

 (a) Answering questions about various blueprints

2. Reading Assignment and answering questions

Burghardt Pgs. 120-126 Question sheet #4

3. Discussion of answers.

4. Threaded parts -- information about taps and dies.

5th-4 hour session

1. Blueprint reading, asking and answering questions - Question sheet #6

2. Summary of facts presented up to this time.

3. Visual knowledge of tools used in the machine and tool industry - using Starrett Catalog #26

 Vernier Height Gage
 Vernier Caliper
 Surface Gage
 Planer Gage
 Indicators

 Thread gages
 Depth mikes
 Combination sets of stock, center head
 Bevel protractors
 Combination squares
 Etc., Etc., Etc.
MILLING MACHINE WORK

Important Information

<table>
<thead>
<tr>
<th>Important Information</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name of important parts Type of milling machines</td>
<td>Milling Mch.</td>
<td>1 to 5</td>
</tr>
<tr>
<td>2. Special attachments for milling machines</td>
<td>Milling Mch.</td>
<td>5 to 8</td>
</tr>
<tr>
<td>3. Type of cutters used and their speeds</td>
<td>Milling Mch. Small Tools</td>
<td>9, 10, 32 22, 23</td>
</tr>
<tr>
<td>4. Arbors and collets</td>
<td>Small Tools Milling Mch.</td>
<td>22, 8</td>
</tr>
<tr>
<td>6. Setting cutters central vise jaws parallel</td>
<td>Milling Mch.</td>
<td>11, 12, 13</td>
</tr>
<tr>
<td>7. Dividing head (name of parts)</td>
<td>Milling Mch.</td>
<td>13</td>
</tr>
<tr>
<td>8. Direct or rapid indexing</td>
<td>Milling Mch.</td>
<td>14</td>
</tr>
<tr>
<td>9. Plain indexing</td>
<td>Milling Mch.</td>
<td>14, 15, 16</td>
</tr>
<tr>
<td>10. Angular indexing</td>
<td>Milling Mch.</td>
<td>20, 21</td>
</tr>
<tr>
<td>11. Spacing slots (using) dial on cross-feed screw</td>
<td>Milling Mch.</td>
<td>27</td>
</tr>
</tbody>
</table>

SHAPER WORK

Important Information

<table>
<thead>
<tr>
<th>Important Information</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name of principal parts Type of shapers</td>
<td>Shaper</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>2. Common type of tool bits Clearance and rakes</td>
<td>Shaper</td>
<td>4, 5</td>
</tr>
<tr>
<td>3. Accessories</td>
<td>Small Tool</td>
<td>12</td>
</tr>
</tbody>
</table>
Important Information

<table>
<thead>
<tr>
<th>Important Information</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Combination set application</td>
<td>Small Tool</td>
<td>11</td>
</tr>
<tr>
<td>5. Height gage and surface gage</td>
<td>Small Tool</td>
<td>16, 17</td>
</tr>
<tr>
<td>6. Faults in operation- correct methods</td>
<td>Shaper</td>
<td>5, 6</td>
</tr>
<tr>
<td>7. Machining rectangular work</td>
<td>Shaper</td>
<td>5</td>
</tr>
<tr>
<td>8. Clapper box settings for vertical and angular cuts</td>
<td>Shaper</td>
<td>6</td>
</tr>
<tr>
<td>9. Methods of machining dovetails and measuring for size</td>
<td>Shaper</td>
<td>6, 7, 8</td>
</tr>
<tr>
<td>10. Cutting a "v" and splining a keyway in a shaft</td>
<td>Shaper</td>
<td>9</td>
</tr>
<tr>
<td>11. Correct methods of clamping work</td>
<td>Shaper</td>
<td>15, 16</td>
</tr>
</tbody>
</table>

LATHE WORK

References: Book 1 - "How to Run a Lathe" - South Bend Lathe Co.
Book 5 - "Shop Theory" - Henry Ford Trade School

<table>
<thead>
<tr>
<th>Important Information</th>
<th>Book</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name and purpose of principal parts of a lathe</td>
<td>1</td>
<td>6, 22, 23</td>
<td>16, 22, 23</td>
</tr>
<tr>
<td>General lathe information</td>
<td>1</td>
<td>16 to 24</td>
<td>16 to 24</td>
</tr>
<tr>
<td>Names of principal parts (purpose and description)</td>
<td>5</td>
<td>Lathe</td>
<td>1 to 7</td>
</tr>
<tr>
<td>2. Lathe centers, their care and alignment</td>
<td>1</td>
<td></td>
<td>42, 43, 44, 50</td>
</tr>
<tr>
<td>3. Belts, their care and how to shift them.</td>
<td>1</td>
<td></td>
<td>16, 17</td>
</tr>
<tr>
<td>4. Steel</td>
<td>1</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>5. Methods of centering work</td>
<td>1</td>
<td></td>
<td>35 to 40</td>
</tr>
<tr>
<td>Combination center drill-Mounting work on centers.</td>
<td>5</td>
<td>Lathe</td>
<td>9</td>
</tr>
</tbody>
</table>
Important Information | Book | Section | Pages
--- | --- | --- | ---
6. Grinding lathe tools - their rake and clearance. | 1 | 25 to 30
Cutting tools and holders | 5 | Lathe | 7, 8
Rakes and clearances | 5 | Small Tool | 13
7. How to measure with steel rule | 5 | Rule | 1, 2, 3
8. How to measure with calipers | 1 | 31, 32, 33
Cutting tools and holders | 5 | Small Tool | 15
9. Fractions- Decimal equivalent | 5 | Front of Bk. 1, 2
10. How to read micrometers | 1 | 34
How to read and use micrometers | 5 | Micrometer | 1 to 4
11. Files and filing | 5 | Files | 1 to 8
12. Table of cutting speeds | 5 | Lathe | 13
Cutting speeds and lubricants for various metals. | 1 | 47
13. Knurling in lathe | 1 | 52
| 5 | Lathe | 15
14. Machining work on mandrels | 1 | 53, 54
15. Taper turning (methods) | 5 | Lathe | 13
Application-calculations for compound rest and taper attachment | 5 | Taper | 1 to 8
Taper turning and boring (how to figure tailstock set-over and comp. rest and taper attachment settings. | 1 | 75 to 84
16. Mounting work in chuck | 1 | 66
(instructor should explain difference between independent, universal, combination chucks)
Special lathe set-ups. Description and precautions. | 5 | Lathe | 10, 11, 12
17. Drilling, reaming, tapping in the lathe. Allowances for reaming cutting compounds. Tap
Important Information

and drill sizes. How to figure size to bore before threading. Use of lead. 1 73, 74

18. Draw-in collets and their uses 1 118, 119
 " " " " " 5 7

19. Center gauge - its uses 5 Lathe 14

20. Screw threads-National Series
 Class of fits 5 Thread 1 to 4
 Dies and tap drill sizes 5 6, 7
 Standard thread forms 5 5 to 9

Screw threads-terms, measurements, fits, change gears, use of thread dial. Left hand threads. 1 86 to 104

21. Rules to observe when operating and performing various operations in the lathe 1 145, 146
 Safety rules 5 15

DRILL PRESS WORK

References: Book 3 - "Handbook for Drillers" - Cleveland Twist Drill Company
 Book 5 - "Shop Theory" - Henry Ford Trade School

1. Type of drill presses used 5 Drill & drilling 13, 14

2. Parts of a twist drill necessary to know, so as to intelligently discuss their rake, clearances, cutting angles 1, 2, 3 4 to 8

3. Stock drill sizes - with table 3 9, 28, 28, 30 Drill & drilling 15, 16
 of cutting speed 5

4. Types of drill shanks 5 " 3
 3 8

5. Points on grinding (why and how) 3 9 to 16
 3, 4, 5
<table>
<thead>
<tr>
<th>Important Information</th>
<th>Book</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Grinding drill for different materials</td>
<td>3</td>
<td>Drill & drilling</td>
<td>20, 21, 22</td>
</tr>
<tr>
<td>7. Purpose of thinning web on large drills</td>
<td>5</td>
<td>"</td>
<td>6</td>
</tr>
<tr>
<td>8. Sockets, sleeves, drifts and tools you will use.</td>
<td>3</td>
<td>Small Tool</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>9. Common errors in practice and their results</td>
<td>3</td>
<td>Drill & drilling</td>
<td>24 to 27</td>
</tr>
<tr>
<td>10. Drilling small holes</td>
<td>3</td>
<td>"</td>
<td>21, 22</td>
</tr>
<tr>
<td>11. Meaning of common operations done in drill press</td>
<td>5</td>
<td>Drill & drilling</td>
<td>10, 11, 12</td>
</tr>
<tr>
<td>12. Lubricants and their functions</td>
<td>5</td>
<td>"</td>
<td>21, 22</td>
</tr>
<tr>
<td>13. Speeds and feeds - Calculations</td>
<td>3</td>
<td>Drill & drilling</td>
<td>9, 10</td>
</tr>
<tr>
<td>14. Layout instructions and use of gouge or round nose chisel</td>
<td>5</td>
<td>"</td>
<td>8, 9</td>
</tr>
<tr>
<td>15. Use of surface gauge, dividers & hermaphrodites in layout</td>
<td>5</td>
<td>Small Tool</td>
<td>12 fig. 103</td>
</tr>
<tr>
<td>16. Table of cutting speeds Top drill sizes Decimal equivalent of drill sizes</td>
<td>5</td>
<td>"</td>
<td>15, 16</td>
</tr>
</tbody>
</table>
Use and Care of Tools and Equipment

Keep tools clean and free from moisture.

Remove chucks and faceplates with proper tools.

Keep milling machine arbor support well lubricated. If using center at end of arbor adjust with small amount of end play to allow for expansion of arbor when heated and to minimize friction at this point.

When assembling taper parts of machines, be sure they are free of chips.

Before putting measuring instruments away, wipe with oily rag to protect from moisture.

Do not run drills into table of drill press.

Do not permit wheel on surface grinder to touch angle iron, vise or other piece of equipment used to support work.

Do not file into bench vise jaws.

Use soft metal hammer where possible to prevent marring work and damaging machines.

Shut off furnaces, forges, torches, etc., as it not only wastes fuel to let them run, but shortens the life of the furnace lining.

Do not force calipers over work or use on work while it is turning.

Keep tools sharp. After sharpening on tool grinder be sure to remove burrs with small oil or carborundum stone as this will make tools produce better work and last longer.
Before putting calipers and dividers away open them part way to relieve the spring.

Keep precision measuring instruments from dropping on the floor.

Do not force drills, files, emery wheel, etc., beyond their capacity to cut.

Clean all threaded parts thoroughly before assembling.

Place lathe chuck, faceplate and miscellaneous tools where they will not collect dirt and chips when not in use.

Adjust machine radial and thrust bearing and work between centers to allow for expansion and contraction due to temperature changes.

Do not lay files or other tools on lathe ways between carriage and head or tailstock.

Do not place tools where they will be jammed by moving tables.

Do not use hammers or wrenches with split or broken handles.

Keep oil holes clean.

Keep belts tight and well laced.

Lubricate the lathe dead center often especially when taking long, heavy cuts.

Clean centers and center holes before placing work between centers.

Loosen the toolpost and do not hammer the toolholder when making adjustments.
Do not permit tool or holder to run into lathe dog.
Stop machine before shifting or changing gears.
Do not remove chips from file by rapping on lathe ways.
Do not run cutting tools into mandrels.
Take light cuts on work supported on small mandrels.
Fasten dog on turned down end of mandrel, not on working surface.
Lubricate mandrels before driving into work.
When using an oil brush to lubricate and clean a milling machine cutter, apply the brush to the top of the cutter and do not permit it to get caught between the cutter and the work.
Use wrenches, screwdrivers, pliers, etc., of adequate size so as not to spring out of shape or break.
Do not use screwdrivers for chisels.
Learn to tighten screws and clamps enough to hold but no more as excessive tightening throws an unnecessary strain on the parts tightened.
Keep cutting tools cool when sharpening, as excessive heat will draw the temper enough to destroy their cutting qualities.
Use solid wrenches where possible, and wrenches of correct size.
Do not attempt to use collets for holding work larger or smaller than the size for which the collet was intended, as they will break or spring out of shape.
Use proper cutting speeds so as not to overheat or over-strain tools.
Do not permit milling machine cutters to run backwards.
When tapping deep holes, remove tap now and then to lubricate it and to remove chips.
Do not run cutters into dividing head or tailstock center, vises or dogs used to drive work.
Tighten drills securely so they will not slip and chew up shank.
Do not hold drills against work without feeding as this dulls them rapidly.
Keep emery wheels clean and true.
Do not use files as prybars.
Fasten file handles securely, but do not split.
Oil machines thoroughly before using.
Keep measuring tools away from ordinary tools when using and when put away.
Keep hacksaw blade from twisting or buckling to prevent breakage.
Do not use scales as screwdrivers.
Use proper size wrench for tapping— if too large wrench is used the feel of the tap will be lost increasing the possibility of breakage.
Grind tools with correct rakes and clearances.
When lacing belts, cross lacings on outside of belt, not on pulley side.

SAFETY RULES FOR THE MACHINE SHOP - General safety -
Remove chuck key from chuck before starting machine.
Keep waste away from moving parts.
Remove chips from machine with brush (never use your hands).
Keep fingers away from all moving parts.
Stop machine before attempting to measure job.
Stop tool-post grinder before trying center gauge or measuring work.
Turn machine by hand when taking off or putting on a chuck.
Remove tool from tool post before taking off or putting on a chuck.
A cold chisel with a mushroom head should not be used.
Be careful of wrench slipping.
Exercise extreme care in handling electric drill.
Never allow water to come in contact with hot babbitt, lead, oil, or cyanide of potassium.

MILLING MACHINE SAFETY
Stop machine before measuring work.
Stop cutter from rotating before removing the chips with a brush (Hands should never be used).
Be careful in handling cutters.
Fasten work securely in machine.
GRINDING SAFETY

Get proper instruction before attempting any grinding.
Wear your goggles.
Keep fingers clear of abrasive wheel.
Fasten wheel securely.
Keep wheel properly dressed.
Guard abrasive wheels properly.
Do not overload grinding wheel.
Wheel must be balanced.
Replace trip dogs after truing wheel or cylindrical grinder.

HEAT TREATMENT SAFETY

Be careful of flare-back when lighting furnace.
Do not allow a furnace to reach an excessive temperature.
Use care in quenching work.
Do not allow water to come in contact with hot oil, babbitt, lead, or cyanide of potassium (cyanide of potassium is a deadly poison).
Never allow oil bath to catch fire through excessive heat.
Know how to combat oil fire.
Keep hands away from hot iron, lead or cyanide.
Select proper tongs to hold work.

MISCELLANEOUS SAFETY

Loose clothing should not be worn in the shop.
Always use a belt stick in mounting belts.
Never allow metal belt lacing to protrude on the sides of overhead belt.
Ladders must be securely placed and of proper construction.
Do not attempt to oil revolving machinery of countershafting.
Do not wear any rings.
Never remove guards from machinery.
Sleeves are to be rolled up to the elbow.
Don't ignore scratches or slight cuts.
You cannot talk and run power machinery at the same time.
Do not leave anything in your eyes overnight - such as chips, emery etc.
No files should be used without a handle.
Do not fail to report if any part of your machine is out of order. "An ounce of prevention is worth a pound of cure."
Do not leave anything loose overhead where machinery is running.
Do not invite accidents by ignoring danger signs; carefulness pays.
SUGGESTED OUTLINE - BLUE PRINT READING COURSE
For

NATIONAL DEFENSE

Objective

To train machine operators or those employed in allied trades to read such blue prints as would be necessary in the performance of their daily tasks, and to acquire the necessary auxiliary information usually connected with blue print reading.

Elementary (To be covered in 200 hour machine courses)

Three view projection
Dimensioning systems
 Fractional, decimal
Scales; full, half, quarter, double etc.
Angular measurement
Mechanical abbreviations
Tolerances
 Fractional, decimal, angular
Methods of indicating finishes
Drilled, reamed, bored, c'bored, c'sunk, spot facing and cored holes
Tapers, chamfers, necking and grooving
Sections, full and half
Materials in section
Screw threads systems
 Nomenclature
 Conventional representation
 Class of fit
 Fine and coarse thread series
Tapping holes
 Tap drill sizes
 Conventional representation
Standard machine fastening
 Screws, bolts, nuts
 Keys
 Springs, pins, rivets
Knurling
Title block
Specifications (part lists)
 Quantities, materials, commercial parts
Change notes

Advanced (To be covered in supplementary courses)

Auxiliary views
Violations of true projections
Omission of invisible detail
Revolved sections
Violation of true projection as applied to sectional views.
Detached sections
Fits
Shrink, drive, running etc.
Splines
Parallel, radial and involute
S. A. E. numbering system for steel and other materials.
Heat treating
Hardening
Cyanide, pack, nitriding, gas
Tempering
Annealing
Normalizing
Methods of testing
Hardness
Brinell, Rockwell, the Scleroscope
Eccentricity
Magnetically
Surface finishes
By depositing, plating, etc.
By heat
By salts and liquids
By tooling
Assemblies
Center tie-ups
Omission of invisible detail
Fits (advanced)
Allowances, positive and negative
Dimensioning, adding and multiplying of error
T slots, dovetails, gibbs

Special (General outline to be expanded for special trades)

Sheet metal drawings
Intersections and developments
Welding, brazing, conventions for same
Structural steel drawings
Shapes, fastenings; conventions for same
Welding, brazing; conventions for same
Shop layouts
Floor plans
Pipes and connections, conventions for same
Electric wiring and connections, conventions for same
Mechanical drives, conventions for same

Gearing
Gear tooth forms, involute, cycloidal
Gear tooth systems, full depth, stub, fellows, etc.
Types of gearing, spur, bevel, helical, worm etc.
Inspection methods and equipment.
Each instructor marks each trainee in his class each day.

<table>
<thead>
<tr>
<th>Student's Name</th>
<th>Operation</th>
<th>Time</th>
<th>Grade</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When the trainee has finished his course the following card is filled out and sent to the State Employment Bureau for their files.

<table>
<thead>
<tr>
<th>Name</th>
<th>Social Security number</th>
<th>Occupation trained for</th>
<th>Title of course</th>
<th>Address</th>
<th>Training center</th>
<th>Date enrolled</th>
<th>Number of hours of training</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date completed

Tools and instruments used:

Machines used:

Materials used:

Title

Date

Remarks:
CHAPTER III

Results of Two Training Centers
On the application blank each trainee is requested to answer questions relative to his nationality, birthplace, age, education, home address, employment and citizenship. Of these groups we are here classifying them as graduates or drop-outs, which may mean they found employment before their 200 hours were up, or left for various other reasons.

The following lists include General Machine Courses 104 and 105 only. They do not include any enrollments from the State Trade School.*

* Figures taken from Board of Education records on Job-Training in Public Schools, Hartford Connecticut.
<table>
<thead>
<tr>
<th>NATIONALITY</th>
<th>Grad.</th>
<th>Dropped</th>
<th>General Machine 104 - General Machine 105</th>
<th>Grad.</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>129</td>
<td>24</td>
<td>Eng.-Irish</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Am-Armenian</td>
<td>1</td>
<td>0</td>
<td>Eng.-Swedish</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Am-Bohemian</td>
<td>1</td>
<td>0</td>
<td>French</td>
<td>37</td>
<td>9</td>
</tr>
<tr>
<td>Am-Czech.</td>
<td>1</td>
<td>0</td>
<td>German</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Am-French</td>
<td>9</td>
<td>0</td>
<td>Ger.-American</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Am-Greek</td>
<td>1</td>
<td>0</td>
<td>Ger.-Dutch</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Am-Norway</td>
<td>1</td>
<td>0</td>
<td>Ger.-English</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Am-Swedish</td>
<td>1</td>
<td>0</td>
<td>Ger.-French</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Am-Syrian</td>
<td>1</td>
<td>0</td>
<td>Ger.-Hungarian</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Armenian</td>
<td>8</td>
<td>1</td>
<td>Ger.-Irish</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Austrian</td>
<td>5</td>
<td>1</td>
<td>Greek</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Austrian-Am.</td>
<td>2</td>
<td>0</td>
<td>Greek-Irish</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bohemian</td>
<td>1</td>
<td>0</td>
<td>Greek-Polish</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Czech</td>
<td>1</td>
<td>1</td>
<td>Greek-Scotch</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Danish</td>
<td>0</td>
<td>1</td>
<td>Hungarian</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Danish-Eng.</td>
<td>1</td>
<td>1</td>
<td>Indian-Scot.-Irish</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Danish-Irish</td>
<td>0</td>
<td>1</td>
<td>Irish</td>
<td>54</td>
<td>20</td>
</tr>
<tr>
<td>Dutch-Eng.</td>
<td>2</td>
<td>0</td>
<td>Irish-Am.</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Dutch-Russian</td>
<td>1</td>
<td>0</td>
<td>Irish-Arabian</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>English</td>
<td>25</td>
<td>3</td>
<td>Irish-French</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>English-Scottish</td>
<td>1</td>
<td>0</td>
<td>Italian</td>
<td>173</td>
<td>20</td>
</tr>
<tr>
<td>Language Pair</td>
<td>Grad.</td>
<td>Dropped</td>
<td>Language Pair</td>
<td>Grad.</td>
<td>Dropped</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Ital.-Armenian</td>
<td>1</td>
<td>0</td>
<td>Scot.-French</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ital.-English</td>
<td>1</td>
<td>0</td>
<td>Scot.-Irish</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ital.-Irish</td>
<td>4</td>
<td>1</td>
<td>Scot.-Eng.-Irish</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ital.-Polish</td>
<td>0</td>
<td>1</td>
<td>Slovak</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Ital.-Scotch</td>
<td>1</td>
<td>0</td>
<td>Spanish</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jewish</td>
<td>80</td>
<td>11</td>
<td>Span.-Swiss</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Lithuanian</td>
<td>26</td>
<td>3</td>
<td>Swedish</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Lith.-Finn</td>
<td>1</td>
<td>0</td>
<td>Swiss</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Lith.-Irish</td>
<td>1</td>
<td>0</td>
<td>Syrian</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Negro</td>
<td>7</td>
<td>3</td>
<td>Syr.-Polish</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Negro-Jewish</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polish</td>
<td>127</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol.-Irish</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol.-Scotch</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portuguese</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumanian</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rum.-Russian</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td>23</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russ.-Austrian</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russ.-English</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russ.-Polish</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotch</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scot.-American</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* One graduate and 1 dropped did not give this information.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Armenia</td>
<td>1</td>
<td>0</td>
<td>Minnesota</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>1</td>
<td>0</td>
<td>Missouri</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>8</td>
<td>0</td>
<td>Montana</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>1</td>
<td>0</td>
<td>New Hampshire</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>184</td>
<td>28</td>
<td>New Jersey</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Czecholovakia</td>
<td>1</td>
<td>0</td>
<td>New York</td>
<td>48</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>0</td>
<td>1</td>
<td>No. Carolina</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>England</td>
<td>5</td>
<td>1</td>
<td>Palestine</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>4</td>
<td>0</td>
<td>Pennsylvania</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>2</td>
<td>0</td>
<td>Poland</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
<td>0</td>
<td>Portugal</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hartford</td>
<td>354</td>
<td>48</td>
<td>Rhode Island</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>1</td>
<td>0</td>
<td>Rumania</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>2</td>
<td>0</td>
<td>Russia</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>2</td>
<td>1</td>
<td>Scotland</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>2</td>
<td>3</td>
<td>Vermont</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>22</td>
<td>1</td>
<td>Virginia</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>1</td>
<td>0</td>
<td>W. Virginia</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>25</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>93</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>830</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>
Table IV

<table>
<thead>
<tr>
<th>EDUCATION</th>
<th>General Machine 104 7/15/40 to 9/20/41</th>
<th>General Machine 105 7/29/40 to 6/28/41</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graduate</td>
<td>Dropped</td>
</tr>
<tr>
<td>1 to 5th Grade</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>6th Grade</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7th Grade</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>8th Grade</td>
<td>112</td>
<td>19</td>
</tr>
<tr>
<td>9th Grade</td>
<td>69</td>
<td>13</td>
</tr>
<tr>
<td>10th Grade</td>
<td>106</td>
<td>19</td>
</tr>
<tr>
<td>11th Grade</td>
<td>92</td>
<td>16</td>
</tr>
<tr>
<td>12th Grade</td>
<td>363</td>
<td>35</td>
</tr>
<tr>
<td>College 1.</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>College 2.</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>College 3.</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>College 4.</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Higher college work</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>* TOTAL</td>
<td>825</td>
<td>122</td>
</tr>
</tbody>
</table>

* Three graduates gave no educational information on cards.
Table V

<table>
<thead>
<tr>
<th>HOME ADDRESS</th>
<th>7/14/40 to 9/20/41</th>
<th>7/29/40 to 6/28/41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>185</td>
<td>34</td>
</tr>
<tr>
<td>Hartford</td>
<td>619</td>
<td>85</td>
</tr>
<tr>
<td>Iowa</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Maine</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>New York</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Vermont</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>830</td>
<td>122</td>
</tr>
</tbody>
</table>
Table VI

<table>
<thead>
<tr>
<th>Citizenship</th>
<th>Graduates</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Born Citizens</td>
<td>773</td>
<td>115</td>
</tr>
<tr>
<td>Naturalized</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Alien</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>828</td>
<td>121</td>
</tr>
</tbody>
</table>

* Two graduates omitted this information - one from Canada and one from Poland.
Table VII

<table>
<thead>
<tr>
<th>COLOR</th>
<th>Graduate</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>821</td>
<td>119</td>
</tr>
<tr>
<td>Negro</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Red</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>830</td>
<td>122</td>
</tr>
</tbody>
</table>
Table VIII

<table>
<thead>
<tr>
<th>WPA</th>
<th>Graduate</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>113</td>
<td>35</td>
</tr>
</tbody>
</table>
Table IX

REASONS FOR DROP-OUTS

<table>
<thead>
<tr>
<th>Reason</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-attendance</td>
<td>106</td>
</tr>
<tr>
<td>Found work</td>
<td>5</td>
</tr>
<tr>
<td>Physical condition</td>
<td>4</td>
</tr>
<tr>
<td>No mechanical aptitude</td>
<td>6</td>
</tr>
<tr>
<td>In United States Army</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
</tr>
<tr>
<td>Employment</td>
<td>General Machine 104</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>7/15/40 to 9/20/41</td>
</tr>
<tr>
<td>Allen Mfg. Company</td>
<td>8</td>
</tr>
<tr>
<td>Arrow, Hart & Hegeman</td>
<td>1</td>
</tr>
<tr>
<td>Billings & Spencer</td>
<td>12</td>
</tr>
<tr>
<td>Bond Bread</td>
<td>1</td>
</tr>
<tr>
<td>Bush Mfg. Co.</td>
<td>1</td>
</tr>
<tr>
<td>Capewell Mfg. Co.</td>
<td>1</td>
</tr>
<tr>
<td>Colt's</td>
<td>163</td>
</tr>
<tr>
<td>Cushman Chuck</td>
<td>4</td>
</tr>
<tr>
<td>Economy Elec. Co.</td>
<td>1</td>
</tr>
<tr>
<td>Fenn Mfg. Co.</td>
<td>1</td>
</tr>
<tr>
<td>Granby Mfg. Co.</td>
<td>3</td>
</tr>
<tr>
<td>Gray Mfg. Co.</td>
<td>1</td>
</tr>
<tr>
<td>Hamilton Propeller</td>
<td>32</td>
</tr>
<tr>
<td>Hanson-Whitney</td>
<td>4</td>
</tr>
<tr>
<td>Hfd. Machine Screw</td>
<td>11</td>
</tr>
<tr>
<td>Hfd. Pntg. & Decorating</td>
<td>1</td>
</tr>
<tr>
<td>Hfd. Pattern & Model</td>
<td>1</td>
</tr>
<tr>
<td>Hfd. Spec. Machine</td>
<td>3</td>
</tr>
<tr>
<td>Hfd. Tool & Die</td>
<td>3</td>
</tr>
<tr>
<td>Henry & Wright</td>
<td>16</td>
</tr>
<tr>
<td>Holo-Krome Screw Corp.</td>
<td>5</td>
</tr>
<tr>
<td>Jacobs Chuck Co.</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL	600
Unemployed	230
Graduates	330
From July 15, 1940 to September 20, 1941 our total enrollment was 981 of which 143 dropped out, 683 graduated and 155 were transferred to Billings and Spencer plant for further training. 552 were placed in employment by August 31, 1941.
CHAPTER IV

Detail of a Proposed Course of Study for High School and Proposed State Program for Improving Industrial Arts.
To train a group for each need of industry and to present an opportunity to more of our students, we have three courses of study.

1. Pre-Apprentice: For the boy above average ability planning to enter aircraft apprentice school, technical college, or other apprentice training courses.

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Required Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>2nd year</td>
</tr>
<tr>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>Algebra</td>
<td>Algebra</td>
</tr>
<tr>
<td>Ancient History</td>
<td>Modern History</td>
</tr>
<tr>
<td>Elect one subject</td>
<td>Elect one subject</td>
</tr>
<tr>
<td>German, French or Italian</td>
<td>German, French or Italian</td>
</tr>
<tr>
<td>General Science</td>
<td></td>
</tr>
</tbody>
</table>

3rd year	**4th year**
English	English (incl. report writing)
Plane Geometry	American History
Physics	Senior Mathematics (Trig. and Solid Geometry)
Mechanical Drawing 1, 2	Metal Shop 1, 2
Elect one subject	Elect one subject
German or French	(Chemistry preferred)
	German or French
2. Pre-Vocational or "Learner": For the boy of good ability but not the superior ability required for an apprentice. He would be employed by the factory in routine work but as he showed ability would be trained in various phases and could advance in some factories, probably to the position of foreman. The purpose of the "learner" or pre-vocational industrial arts curriculum is to give an introduction to machinery, to remove the fear of machines, and to give a background of shop mathematics which would make the boy preferable in initial employment to the untrained person who comes in from the candidate line.

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Required Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>2nd year</td>
</tr>
<tr>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>Applied Math. or Gen. Math.</td>
<td>Metal Shop and Blue</td>
</tr>
<tr>
<td>Woodworking Shop and Mechanical Drawing</td>
<td>Print reading.</td>
</tr>
<tr>
<td>An elective</td>
<td>(Inc. Mech. Drawing)</td>
</tr>
<tr>
<td>(General Science preferred)</td>
<td>Two electives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd year</th>
<th>4th year</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>English (incl. report writing)</td>
<td>(incl. report writing)</td>
</tr>
<tr>
<td>Metal Shop (2 double periods)</td>
<td>Metals Shop</td>
</tr>
<tr>
<td>American History</td>
<td>American Democracy</td>
</tr>
<tr>
<td>An elective</td>
<td>An elective</td>
</tr>
<tr>
<td>(Physics preferred)</td>
<td>(Chemistry preferred)</td>
</tr>
</tbody>
</table>
3. General Industrial Arts: For students who will be seeking employment in routine work as unskilled or individual machine operators. The opportunities at this level are greater and more desirable than is usually recognized for students who take industrial arts merely as a part of general education. Their interests are more largely avocational or "hobby" interests. They have no premeditated vocational intent.

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Required Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>2nd year</td>
</tr>
<tr>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>Applied Math. or Gen. Math.</td>
<td>Metal Shop and Mechanical Drawing</td>
</tr>
<tr>
<td>Woodworking Shop and Mechanical Drawing</td>
<td>Two electives</td>
</tr>
<tr>
<td>An elective</td>
<td>An elective</td>
</tr>
<tr>
<td>(General Science preferred)</td>
<td>(General Science preferred)</td>
</tr>
</tbody>
</table>

3rd year	**4th year**
English	English
Metals Shop or	Metals Shop or
Woodworking Shop and Mechanical Drawing	Woodworking Shop and Mechanical Drawing
American History	American Democracy
An Elective	An Elective

II Objectives

1. To develop interests in and understanding of the place of industry, its materials and processes in social economic life.

2. To develop consumer's knowledge which involves ability to select wisely, care for and use properly various industrial products about the home.

3. To foster appreciation of good workmanship and good design in industrial products.

4. To develop safe working habits and attitudes of respect for hygiene and safe working practices in the preservation of human resources.

5. To further the growth of problem-solving attitudes as experienced in creating industrial products.

6. To inculcate ideals and attitudes of readiness to assist and to cooperate with others in industrial shop activities.

7. To foster the growth of effective individual work habits through cheerful, orderly and methodical performance of any chosen or assigned tasks.

8. To develop "common sense" in the handling of any task.

9. To show the use of drawing and our dependence upon good blue prints, as well as how they are made.
10. To develop wholesome leisure time habits in hobby interests.

11. To provide occupational training in aptitudes and interests.

12. To foster appreciation of the contributions of science to industrial progress.

The following course of study will show how the operations of machine work are presented in High School. They follow an order similar to our Job-Training.

It must be remembered that High School classes meet one period a day (45 minutes) five days a week for thirty-six weeks, making a total of one hundred and thirty-five hours a year.

Job-Training covers 200 hours which amounts to sixty-five hours more than a complete high school year, but the high school pupil has three years in which to take machine courses, so benefits much more than the Job-Training pupil.

The following is a suggested course of study in Machine Shop Practice for Senior High Schools.

Machine Shop Practice for senior high schools is presented as a course of instruction in the nomenclature, operation, use and care of machine-tools and small-tools. Following the most elementary stages, emphasis upon the development of skills becomes progressively greater, until
upon completion of the full high school course, the student is well grounded in the essential principles of Machine Shop Practice.

Good shop habits, including those directly affecting the safety of the workmen, as well as those habits involving common courtesy, certain unwritten laws of the shop, with respect to the rights and privileges of fellow workmen - in fact, those precepts which make for a happy harmonious life with one's fellow workmen - are taught and emphasized unceasingly throughout the course. The above statement of content might well be labelled a "Course in Good Citizenship"; for in truth it is precisely that.

From the beginning, an earnest effort is made to develop an intelligent respect for the equipment with which the workman must do this work. The instructor is often faced with the common, disturbing attitude of "What does it matter? It isn't mine. It belongs "to the city". "If I break it, they'll buy a new one." Despite frequent discouragement, the instructor must fight on, keeping doggedly at it, always striving to persuade the student that, indirectly, the equipment is in fact his own, and should be treated as carefully as if it had been purchased directly at his personal expense.

The instructor emphasizes, for example, the fundamental importance of a finished surface; and the basic reason for maintaining such surfaces in a condition as nearly perfect
as possible. Small-tools, such as files, wrenches, hammers, scribers, center-punches and the like, are presented for use only as intended - each for its own purpose. Rigid insistence is placed upon such use. Attainment of the above objectives, obviously important to any who know machine tools and shop equipment, can be had only as the result of diligent, unceasing effort on the part of the instructor. It is difficult, but well worth the price.

In conjunction with the practical shopwork, a theory period is held during approximately ten class periods each semester. During the theory period, the student studies a textbook on machine-tool operation, or listens to a lecture by the instructor, or witnesses a demonstration relating to the construction, operation and care of some basic machine tool and incidental small tools. Besides gathering a store of valuable information which it is difficult to give individually, the student is furnished with material for a self-made reference book, which may be used to excellent advantage both as the course progresses, and after the course has been completed, should the student elect to pursue some branch of industrial machine-tool or small-tool work.

It will be noted that no mention has been made of the time element, which is so important to production work. It should be borne in mind that, although the subject matter
deals directly with implements of industry, the course is a bona fide part of a public high school curriculum, and as such demands that the primary emphasis be upon the individual student, with due respect for varying aptitudes and interests. While all due importance is accorded the attainment of proficiency in the operation, use and care of shop equipment, there are many cultural values present, which are of even greater value to the young student than are the apparent facts of the course. Some of these cultural values have been mentioned in previous paragraphs. In so far as speed of operation is concerned provided that the graduate from this course finds work in a related field, it is of great importance to him as an individual that he know the "whys and wherefores" of the tools with which he may be called upon to perform. These "Whys and wherefores", the student absorbs gradually by virtue of persistent teaching, during which period he is given the all important privilege of taking sufficient time to learn. Here, of course, the emphasis is upon the development of the individual student, and not upon the product. The student who has diligently applied himself in pursuit of knowledge of the basic machine-tools and small-tools encountered in this course; and who has, incidentally, developed a sound "mechanical sense", will have little difficulty in learning the capacity of a production machine, and in adapting himself
thereto. Moreover (and here again, attention is directed to the pupil emphasis) such a person will, on the whole undoubtedly merit advancement in less time than will the unschooled workman who must learn each detail and “fine point”, as so many do, “the hard way”.

There follows a list of project and operations. These are listed by courses.

SHOPWORK 3

PROJECT: Turning Practice Piece

OPERATIONS:

- Placing "dog" on work
- Removing burrs with a file
- Facing in a chuck
- Spotting centers
- Center-drilling
- Setting up the lathe
 - Mounting the faceplates
 - Placing the centers
 - Lining up centers
 - Setting up the tool
 - Placing stock between centers
- Selection of reasonable spindle speed
- Facing stock between centers
- Measuring length with a scale
- Straight turning
 - Rough turning to a caliper measurement
 - Finish turning to a micrometer measurement, using cross-feed dials
- Turning to a shoulder
- Necking with a cut-off tool
- Knurling
- Filing in the lathe
- Tool-grinding

PROJECT: Drill Adapter

OPERATIONS:

- Use of the power hack-saw, or shaping saw
- All operations necessary to obtain the finish diameter to micrometer measurement
Turning to a shoulder
Necking
Setting up milling-machine index-head
Milling the tapered square tang
Drilling in a lathe
Drilling in a vise, in a drill-press
Tapping a hole
Making the set-screw
Use of collets
Use of compound rest
Facing
Turning
Turning to a shoulder
Milling flats on a square-head set screw
Cutting a thread with a die
Polishing with emery cloth in a lathe

PROJECT: Special Jobs (lathe-rickers, tools, etc.) teaching the use of the shaper

PROJECT: "V"-belt Pulley

OPERATIONS:

Truing up stock in an independent chuck
All previous operations incident to center-drilling in a lathe
Mounting stock on an arbor
Use of the arbor press
Facing and turning on an arbor
Use of a form-tool
Drilling a hole at an angle
Tapping a hole at an angle
Making a headless set-screw
Turning
Chamfering
Threading with a die
Cutting off with a hack-saw
Hack-sawing a screw-driver slot
Use of soft jaws for the vise

PROJECT: Thread-turning exercise

OPERATIONS:

All operations on Shopwork 3 incident to preparation for cutting a thread
Determining the correct pitch of the thread from a chart
Selection of the proper stud-gear and screw gear
Mounting the gears
Setting the thread-chasing lever on the apron
Setting the tool
Use of the center-gauge
Setting the thread-stop
Use of the thread-chasing dial
Fitting the thread to a thread-gauge
Use of the file to remove burrs

PROJECT: Clamp-dog Screw

OPERATIONS:
All previous operations incident to turning to size and length
Milling flats on the square head of the screw
Turning the thread
Fitting the thread
Finishing and polishing the screw

PROJECT: Milling-machine Jack

(Parts: base; screw; anvil; set-screw)

OPERATIONS:
All necessary previous operations
Use of a counter-bore
Use of a boring tool
Use of a round-nose form tool
Draw-filing

SHOPWORK 5

PROJECT: Hack-saw Frame

(Parts: frame-back; end-blocks; handle; nut; collar; screw; stud; handle-plug)

OPERATIONS:
Use of power hack-saw
Bending heated metal
Use of surface-plate and surface-gauge
Filing
Draw-filing
File-fitting
Removing burrs
Turning
Facing
Lay-out work
Center-drilling
Drilling
Milling slots
Use of hand hack-saw
Counter-sinking
Cold rieting
Setting up stock in a chuck
Reaming
Mounting work on an arbor
Scale measurement
Knurling
Filing in a lathe
Milling with the index-head
Tapping
Use of the arbor press
Setting up the lathe for thread-cutting
Cutting a thread in a lathe
Fitting a thread to a thread-gauge
Milling a shoulder
Drilling holes at an angle
Use of spring collets
Micrometer measurement
Turning a piece to a force-fit
Use of the precision collet lathe, with compound rest
Polishing work with emery-cloth
Care of all machines, machine-tools and small-tools involved in the above operations
Practice in the care and operation of the tool-crib

SHOPWORK 6

GENERAL: The care and operation of all machine-tools and small-tools involved in the following operations:

- Instruction and work on the surface grinder and the cylindrical grinder
- Care and operation of the tool-crib
- Special jobs, involving the making of shop equipment.

PROJECT: Model Steam - or Air-powered Engine

OPERATIONS:

A very finely developed model steam-engine is at present serving as the working material for Shopwork 6,
and a part of the time for Shopwork 7. This clever little model has been developed from a very modest original. Over a period of several years, refinement has followed refinement, until the present model is a neat, compact assembly of finely designed parts. It may be appropriate to state that the model actually works. The multiplicity of operations involved includes work of a comparatively precise character, carried out on virtually every machine-tool in the shop. The standards of accuracy are appropriately more rigid than those imposed in previous courses; and are maintained as nearly as possible, in proportion to the previous experience and apparent capacity for development, of the individual student.

Work upon the component parts of the above model requires fine work with some of the more common precision instruments, such as the dial indicator and the "center wiggler".

As stated above, some few of the parts are finished by grinding on the surface grinder, and on the cylindrical grinder.

SHOPWORK 7

GENERAL:

Care and operation of all machine-tool and small-tools involved in the following operations

Special jobs involving the making of shop equipment.
Care and operation of the tool-crib
Work on the surface grinder
Work on the cylindrical grinder

PROJECT: Model Steam or Air-powered Engine

In the event that some students do not complete the making of the model engine described in Shopwork 6, sufficient time is now given for the completion of that job.

PROJECT: Indexing and gear problems

Attention is given to the solution of gear problems. Considerable time is spent studying the more common gear formulae. After a reasonable time, a problem is presented to the student, who works out the necessary data, using the above formulae. He then starts with raw stock, and puts his data into practice. This involves selection of the proper gear-cutter; indexing the teeth of the gear; layout of the correct center-distance, and the mounting of the gear and pinion in a working position.

An incidental to the solution of the above problems, of course, is the making of the gear and pinion blanks; turning and fitting of the studs; making and finishing of the base for mounting the gear and pinion.

The gear, the pinion and the base are ordinarily finished upon the surface grinder.

PROJECT: Spiral Milling Problems

In the remaining time, attention is given to study
and practice in the setting up of the universal milling machine for special indexing and milling. The student receives instruction in the principles of the operations, and is aided in setting up and operating the milling machine in solution of a problem of this nature.

SHOPWORK 8

This course is being developed in addition to the foregoing, which have been in operation for a period of many years. Shopwork 8 is a sort of apprentice course, designed to furnish the student with knowledge of and experience with common production devices.

The production devices involved are fixtures, jigs and gauges. Specially designed project necessitate the use of all these devices, to the end that the student who elects to enter the field of industrial production may leave high school knowing that such things are used; what they are; why they are used; and something of their construction and use.

The time element is an important factor in Shopwork 8. The projects developed for this course call for considerable work on the surface grinder and the cylindrical grinder.
PRE-VOCATIONAL OR LEARNER GROUP

Grade X -- Some Blueprint Reading
(including Mechanical Drawing)

I. Trends and II. Objectives

The study of Mechanical Drawing has long been recognized as the best method of learning to read drawings. Present industrial trends make it absolutely necessary that this universal language (mechanical drawing) be understood. Mechanical Drawing as we know it necessitates long and careful study. Some pupils will need only a working knowledge that permits them to understand a draftsman and perhaps to make rough drawings themselves upon occasion. Those who need an expert knowledge of drawing must secure it by taking a more thorough course in Mechanical Drawing. We believe shop sketching may be quicker and will fulfill the desired need adequately. It is essential that students have some method of expressing the principles discussed in the text, and shop sketching meets this need admirably.

In recognition of the principle that we learn by doing, a number of drawings have been included to give practice in reading. This course has been arranged to cover as wide a range as possible.

We believe the course to be well-suited to individual study, and when it is so used we urge that special attention be paid to shop sketching, and that the student seek criticism of his drawings by the instructor.
This course has been prepared for those who wish to acquire a working knowledge of the subject through reading. Into it the authors try to give an understanding of the fundamental principles of Mechanical Drawing, a knowledge of drafting conventions, practice in the interpretation of drawings, and some practice in expressing one's own ideas by "shop sketching".

The work in "shop sketching" is included to fill the student's need for some form of expression of the information imparted in the instructions. It is a well-known and sound principle of teaching that we do not really know a thing until we can give some expression to that information; or, in other words, make some use of it. In addition, the ability to "draw" is a very valuable acquisition to one who may be called upon to explain the meaning of a drawing, or to give constructive directions to others.

III. List of operations of activities

This course includes the use of instruments and drawing at the board. It would be much shorter than the present school course, and many problems concerning theories, inking, and technique would be dropped. The course would cover the use of instruments, detailing, and the making of blueprints.

IV. Suggested Projects

1. Drawings of sections of different types and symbols: building, electrical, surfaces, rivets, screws and bolts.
2. Orthographic Projection
3. Drawings of Auxiliary views and actual sections
4. Revolutions
5. Drawings of Trade conventions of threads
6. Drawings of Trade conventions of bolts
7. Sketches of details from actual shop prints
8. Sketches of details from actual shop prints
9. Sketches of layout or assembly from shop details
10. Sketches of layout or assembly from shop details

V. Suggested Texts

1. Technical Drawing — Giesecke, Mitchell, Spencer
2. Blueprint Reading — Wyatt
3. Blueprint Reading — Ford Trade School
4. Mechanical Drawing for High Schools — Youngberg

SHOP THEORY

Trends

I. A segregated, compact and closely correlated theoretical course designed to aid in solving shop problems.

II. Definite goal formulated to meet needs as we know them.

III. Careful classification of pupils as to abilities in various classes.

IV. A more true and accurate means of evaluating the work of individuals, providing a true index of knowledge and abilities.

V. Provide a setting which will develop correct attitudes, interests and appreciation.
VI. Affording a place in our methods for the use of films, lectures, visits, trade periodicals and manufacturer's literature.

Objectives

I. A more technical background for students to approach and solve by industrial methods the shop problems.

II. Applying to known shop problems industries, methods, rules, formulae and principles.

III. Stimulate and encourage correct work habits; safe practices; ideals of workmanship and sane attitudes as to leisure.

IV. Provide a true perspective of one's part in the workings of a democracy.

Activities

I. Small Tools

 a. By use of Shop Theory - Henry Ford Trade School

 By use of Machine Tool Operation - H. D. Burghardt

 1. Comprehensive treatment

 a. kinds f. sizes
 b. use g. operation
 c. care h. lubrication
 d. parts i. manufacture
 e. choice j. measurement

 And any other necessary knowledge which will aid us in the utmost in knowledge and skill.
Aids

"Safety Code for Use of Abrasive Wheels"
"Centerless Grinding Bulletin"
"Tool and Cutter Grinding Wheel"-Abrasive Co., Philadelphia
"Aluminum and How to Solder It"
"Samples of Solder" - L. B. Allen Co., 6767 Mawr Ave., Chicago, Illinois
"What Metal Shall It Be?"- American Rolling Mill, Middletown, Ohio
Metal Working Abrasives - samples, lecture course, charts
Bebr-Mainning Co., Troy, N. Y.
Heat Range Chart - Chicago Flexible Sahft Co., Chicago
Heat Color Chart - Carpenter Steel Co., Reading, Pa. 10¢
Cincinnati, Ohio
Metal Cutting With Hack Saw Blades - Clemson Bros., Inc.
Middletown, N. Y.
Wall Chart of Machine Lathe - LeBlond Machine Tool,
Cincinnati, Ohio
Micrometer Chart
Screw Threads Chart

First Aid

Industrial Safety Education - Metropolitan Life Ins. Co.
New York, N. Y.
Correct Pipe Threading Principles - National Tube Co.,
Chicago, Illinois
Wall Chart of Files - Nicholson File Co., Providence R.I.
Bolt, Nut and Rivet Tables - Russell, Bursdell & Wood
Port Chester, N. Y.
Saw Materials - Simonds Co., Fitchburg, Massachusetts
Measurement - Browne, Sharpe Co., Providence, R. I.

NOTE: Practically every concern dealing in Metal
has charts, bulletins or folders we could use to advantage.

Museum

There is one outstanding in this field and that is
the J. Higgins Museum at the Worcester Pressed Steel in
Worcester, Massachusetts, where one may see the develop-
ment through the ages to modern times supplemented by a
vast library of information.
Proposed Teacher Training Program
for
Connecticut in Industrial Arts

Our state program is also progressing toward the same goal. In 1938, long before the present emergency, there was initiated under leadership of the State Board of Education, a long-range program of appraisal and evaluation seeking the development of the best possible educational experience for the boys and girls of Connecticut.

A fundamental principle governing this study is to secure progress through democratic action. That is the reason for the extensive and intensive committee organization - the development from the bottom up rather than from the top down procedure. It is a cooperative venture, the results emanating from the needs as seen in our communities and classrooms of the state.

Another fundamental principle basic to this development is a new concept of the relationship between a state department of education and the local school system. The trend in America toward centralized control and domination everywhere is apparent. General belief that local initiative and control must be strengthened, not only in the field of public education but also in all those services that effect people. For this reason, the purpose of the State Department of Education was defined as: (1) leadership, (2) service, (3) research and planning.
It had become evident through the first study and observation that there must be greater pre-vocational and vocational opportunity for boys and girls. This was substantiated by two years of cooperative study with the Manufacturers’ Association, with labor, and from the observable deficiencies in our system. The war has aided in bringing to the attention of our people the need to train everyone for living and making a living in a technological society.

We desire to see broken down the concept of an aristocracy of subjects; the idea that industrial arts is for the student who cannot get along in academic subjects; the feeling that there must be an intellectual aristocracy based on capacity to complete a particular curriculum preparatory to a higher educational opportunity. If we are to build a classless society these concepts must go.

We believe that every boy or girl should have an opportunity to learn to use his hands. We believe that the industrial arts should provide for broader possible specialization in vocational areas. We believe that according to the abilities of the student, the last two years of the secondary school, and to some extent the earlier years should provide for each, the desirable emphasis on vocational, pre-vocational, avocational, and consumer attitudes and skills.
We believe that there must be a greater correlation between the fine arts and industrial arts, without too many fine departmental lines. In a sense, the industrial arts, fine arts and many other areas of the school program are service areas in the development of a program. We cannot work separately and apart. No one department or area of learning or experience represents the American educational system.

A plan advanced under the leadership of the State Department of Education proposed the universal acceptance of Industrial Arts as part of a general education for all and vocationalization of Industrial Arts for a considerable number. It is my personal judgment that those in the industrial art's field are missing the opportunity if there be a continuance of the belief that industrial arts is solely general education or must not smack of vocational education.

We believe that vocational education for the skilled trades should be intensified and extended. The program of the State Board of Education includes three new trade schools and the expansion of existing facilities and programs.

We believe that candidates for teaching positions in the trade schools and the present teachers should include greater balance of professional educational preparation while maintaining present standards of skill in the given trade.
We believe that training for the semi-skilled trades and jobs generally may be accomplished by the secondary schools of the state and the trade schools working cooperatively. In many cases a broader and more effective program is possible.

Policy Leads to Program

The mere expression of policy gives no benefit to the pupil. Action, if the state board of education is to provide its greatest service, starts with the reorganization of its teacher training program to implement its policy.

Thus, the State Board has created a division of Vocational Education in the Teachers College of Connecticut having three sections. Two of these are important in the field under discussion. The third is "Training for business." Following are the two departments dealing with the problem immediately under discussion:

A. Trade-Industrial - within the division of vocation education. This is a teacher training program for the faculty member either in or planning to enter the trade schools. It is designed not only to provide a general background, but also technical instruction. We have the trade schools of New Britain and Hartford adjacent to the teachers colleges, and these institutions will serve as laboratories.

B. Industrial Arts. Because the implication of industrial
arts in the area of pre-vocational training and the possible outright vocational possibility for many boys and girls, particularly in the semi-skilled areas, we have included, so far as teacher training is concerned, industrial arts within this division of vocational education.

This has nothing to do with the curriculum pursued by industrial art's teachers, but it does recognize that one of the greatest outlets and one of the greatest selling points for industrial arts is its vocational effectiveness and its prevocational importance throughout every school system. More than that, the simplicity of administrative organization is immediately evident.

It must be clear that the industrial arts starts in the early elementary school and that for many it will only be a general education experience, but for all it at least will give the individual an opportunity to learn how to use his hands.

Such inclusion implies that the curriculum of industrial arts teachers will be modified toward the vocational only to include such emphasis as seems desirable toward prevocational and vocational effectiveness. The purpose, as indicated in the philosophy indicated earlier, will be to provide teachers who can in their classrooms give the whole range of emphasis necessary to meet the needs of the individual students in their classes.

This implies no let-down on the general, avocational,
consumer, and cultural aims of industrial arts. It is recognized that these features of industrial arts start very early in elementary school. Thus the industrial arts teacher must be prepared to assist the elementary school teacher in these activities. Far from being dismissed, this factor will be a subject of major attention.

The Staff at Teachers College

As policy leads to program, so an effective program must be implemented by a coordinated effective teaching staff so organized that each teacher has definite responsibilities, clear purpose, and is not overburdened. Thus the following teaching organization has been provided to make the program effective:

1. At the Connecticut Teachers College in New Britain, as head of the Division of Vocational Education will be Raymond Phipps. The responsibility of teacher training in the trade-industrial and the industrial arts section will be his. Associated with him will be five full-time professors in the industrial arts and vocational fields, and in addition six specialists from the central staff. In all, we will have a faculty of approximately fifteen in these areas.

 Dr. Grace will personally teach a course in the field of administration. We will offer not only the undergraduate program but shortly an opportunity for graduate study for a limited number of qualified candidates effective next year.

2. In addition, in the field there will be available
for advice to school systems a specialist in industrial arts. He will be closely associated with Mr. Phipps, for to be effective, training of teachers and service in the field must be closely allied. However, this field consultant will be a part of the Bureau of Youth Services and have the benefits of a special supervisor heading work with youth in industry and of the Director of Guidance. Thus, the direct teacher preparation and consultation service in industrial arts will be assisted by these important supplementing activities.

In conclusion, it is our expectation that proceeding from policy to program to teacher preparation carefully, step by step, building soundly, with due consideration for the interests of all concerned and ever with our eyes on the needs of the individual student in the schools, the evaluation and redirection of the program of industrial arts will lead to improvement and better acceptance by the communities served.
BIBLIOGRAPHY

"Tool and Cutter Grinding wheel" - Abrasive Company
Philadelphia, Pennsylvania

"What Metal Shall It Be?" - American Rolling Mill
Middletown, Ohio

Heat Range Chart - Chicago Flexible Shaft Company
Chicago, Illinois

Heat Color Chart - Carpenter Steel Company
Reading, Pennsylvania

Cincinnati, Ohio

Metal Cutting With Hack Saw Blades - Clemson Bros., Inc.
Middletown, New York

Micrometer Adjustment - Lufkin Rule Company,
Saginaw, Michigan

Industrial Safety Education - Metropolitan Life Insurance Co.
New York, New York

Correct Pipe Threading Principles - National Tube Company
Chicago, Illinois

Measurement - Browne, Sharpe Company, Providence, R. I.

Shop Theory - Henry Ford Trade School, Detroit, Michigan 1941

How To Run A Lathe - South Bend Lathe Company - 39th edition
1940

Volume I and II 1941
Approved by:

M.J. Markison

C.W. Welles

Problem Committee

Date: March 21, 1943