Publication Date

2024

Journal or Book Title

JMIR FORMATIVE RESEARCH

Abstract

Background: Respiratory rate is a crucial indicator of disease severity yet is the most neglected vital sign. Subtle changes in respiratory rate may be the first sign of clinical deterioration in a variety of disease states. Current methods of respiratory rate monitoring are labor-intensive and sensitive to motion artifacts, which often leads to inaccurate readings or underreporting; therefore, new methods of respiratory monitoring are needed. The PulsON 440 (P440; TSDR Ultra Wideband Radios and Radars) radar module is a contactless sensor that uses an ultrawideband impulse radar to detect respiratory rate. It has previously demonstrated accuracy in a laboratory setting and may be a useful alternative for contactless respiratory monitoring in clinical settings; however, it has not yet been validated in a clinical setting.

Objective: The goal of this study was to (1) compare the P440 radar module to gold standard manual respiratory rate monitoring and standard of care telemetry respiratory monitoring through transthoracic impedance plethysmography and (2) compare the P440 radar to gold standard measurements of respiratory rate in subgroups based on sex and disease state.

Methods: This was a pilot study of adults aged 18 years or older being monitored in the emergency department. Participants were monitored with the P440 radar module for 2 hours and had gold standard (manual respiratory counting) and standard of care (telemetry) respiratory rates recorded at 15-minute intervals during that time. Respiratory rates between the P440, gold standard, and standard telemetry were compared using Bland-Altman plots and intraclass correlation coefficients.

Results: A total of 14 participants were enrolled in the study. The P440 and gold standard Bland-Altman analysis showed a bias of –0.76 (–11.16 to 9.65) and an intraclass correlation coefficient of 0.38 (95% CI 0.06-0.60). The P440 and gold standard had the best agreement at normal physiologic respiratory rates. There was no change in agreement between the P440 and the gold standard when grouped by admitting diagnosis or sex.

Conclusions: Although the P440 did not have statistically significant agreement with gold standard respiratory rate monitoring, it did show a trend of increased agreement in the normal physiologic range, overestimating at low respiratory rates, and underestimating at high respiratory rates. This trend is important for adjusting future models to be able to accurately detect respiratory rates. Once validated, the contactless respiratory monitor provides a unique solution for monitoring patients in a variety of settings.

DOI

http://dx.doi.org/10.2196/44717

Volume

8

License

UMass Amherst Open Access Policy

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS