Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Transition metal-containing conducting polymers and segmented carborane-based and polyether triblock copolymers

Huey Huey Lo, University of Massachusetts Amherst

Abstract

Part I. The conductivities, electron spins, and g values of (MMn(DTO)$\sb2\rbrack\sb{\rm n}$ were determined where M = Cu(II), Ni(II), Pd(II), and Pt(II). The spin concentrations of each polymer are random comparing to the decrease of conductivities from (CuMn(DTO)$\sb2\rbrack\sb{\rm n}$ to (PtMn(DTO)$\sb2\rbrack\sb{\rm n}.$ Whereas the interchain distances increase from (CuMn(DTO)$\sb2\rbrack\sb{\rm n}$ to (PtMn(DTO)$\sb2\rbrack\sb{\rm n}$ due to the increase of atomic radii of M metals resulted in the increase of conductivities. It is concluded that the conductivities of (MMn(DTO)$\sb2\rbrack\sb{\rm n}$ polymers are greater along the interchain stacking than along the main chain. Part II. Segmented polyurethanes were prepared by reacting of soft polyol with diisocyanate to form a prepolymer then chain extended with a short chain diol to form high polymer. Stoichiometry considerations are critical for the synthesis of high molecular weight polyurethanes. Preliminary purification, drying, and molecualr weight determination of the starting materials and soft segments are extremely important. The segmented polyurethanes phase separated into hard and soft phases which was confirmed by the observation of constant glass transition temperature of each polymer system. None of the polymers showed reproducible melting transition due to the accompanied decomposition. p2BuDOP based polymers were the most acid-sensitive polymers in all five systems we studied. pAMMO/MDI/pDTM triblock copolymers with 16%, 26%, and 42% hard segment content are excellent elastomers. They showed reproducible melting transitions at maxima of $\sim$110$\sp\circ$C. The constant glass transition of each polymer indicates the polymers are phase-separated. They also showed acid-sensitivity because of the acetal structure. Rheological study showed the polymers melt at range from 50$\sp\circ$ to 120$\sp\circ$C.

Subject Area

Polymers|Organic chemistry

Recommended Citation

Lo, Huey Huey, "Transition metal-containing conducting polymers and segmented carborane-based and polyether triblock copolymers" (1990). Doctoral Dissertations Available from Proquest. AAI9110179.
https://scholarworks.umass.edu/dissertations/AAI9110179

Share

COinS