Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Use of collaborative computer simulation activities by high school science students learning relative motion

James Michael Monaghan, University of Massachusetts Amherst

Abstract

Galileo's contemporaries as well as today's students have difficulty understanding relative motion. It is hypothesized that construction of visual models, resolution of these visual models with numeric models, and, in many cases, rejection of epistemological commitments such as the belief in one "true" velocity, are necessary for students to form integrated mental models of relative motion events. To investigate students' relative motion problem solving, high school science students were videotaped in classroom and laboratory settings as they performed collaborative predict-observe-explain activities with relative motion computer simulations. The activities were designed to facilitate conceptual change by challenging common alternative conceptions. Half of the students interacted with simulations that provided animated feedback; the other half received numeric feedback. Learning, as measured by a diagnostic test, occurred following both conditions. There was no statistically significant difference between groups on the measure. It is hypothesized that students did not show statistically significant performance differences on the relative motion test because (a) many students were able to solve numeric problems through algorithm use; (b) many numeric condition students were aided in their ability to visualize problems by interaction with the treatment; and (c) the animation condition fostered little learning because the activities were too easy for students to perform. Students' problem solving was examined through analyses of protocols and through statistical analyses of written responses. Evidence supported the following findings: (1) Numeric condition students had more difficulty with the computer activities than animation condition students. (2) Many students in both groups were able to construct accurate mental models of relative motion events. (3) A number of numeric condition students used faulty mechanical algorithms to solve problems. (4) A number of animation condition students used visualization to solve problems, mapping dynamic visual features of the animations onto posttest problems. Thus, there is evidence that presentation of numeric data can foster students' use of mechanical algorithms. Presentation of animations can foster visualization of target problems solved off-line. These results suggest that, in addition to the structure of the simulations, how computer simulations are used may have a great impact on students' cognition.

Subject Area

Science education|Educational software|Curricula|Teaching|Secondary education

Recommended Citation

Monaghan, James Michael, "Use of collaborative computer simulation activities by high school science students learning relative motion" (1996). Doctoral Dissertations Available from Proquest. AAI9619414.
https://scholarworks.umass.edu/dissertations/AAI9619414

Share

COinS