Off-campus UMass Amherst users: To download dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users, please click the view more button below to purchase a copy of this dissertation from Proquest.

(Some titles may also be available free of charge in our Open Access Dissertation Collection, so please check there first.)

Computer modeling of enclosed inductively coupled plasma discharges

Ana Matilde Gaillat, University of Massachusetts Amherst

Abstract

The wide application of the different inductively coupled plasma (ICP) techniques commonly available has demonstrated that these methods of excitation and analysis can be reliably used for qualitative and quantitative applications. The enclosed inductively coupled plasma (EICP) adds to the advantages of the conventional ICP some unique features, such as wide operation pressure range, low sample consumption, and capability for the analysis of reactive and/or highly toxic materials. The EICP can be used in two modes: sealed and flowing. In the sealed configuration the gas flow through the container is stopped after the plasma discharge is established, and the plasma is sustained with only the gas inside the container. None of the approaches previously available provided an accurate representation of experimental EICP discharges or used all the predictive capabilities that a modeling technique can give to the evaluation of a plasma discharge. Therefore, the comprehensive modeling of the EICP configuration through the adaptation of existing models and development of new approaches was undertaken as the main goal of the present work. Once the model was developed it was tested and applied to the characterization of different experimental conditions important to the study of the EICP and its possible applications and optimization.

Subject Area

Analytical chemistry

Recommended Citation

Gaillat, Ana Matilde, "Computer modeling of enclosed inductively coupled plasma discharges" (1996). Doctoral Dissertations Available from Proquest. AAI9638959.
https://scholarworks.umass.edu/dissertations/AAI9638959

Share

COinS