Loading...
A relation between Mirkovic-Vilonen cycles and modules over preprojective algebra of Dynkin quiver of type ADE
Citations
Abstract
The irreducible components of the variety of all modules over the preprojective algebra and MV cycles both index bases of the universal enveloping algebra of the positive part of a semisimple Lie algebra canonically. To relate these two objects Baumann and Kamnitzer associate a cycle in the affine Grassmannian to a given module. It is conjectured that the ring of functions of the T-fixed point subscheme of the associated cycle is isomorphic to the cohomology ring of the quiver Grassmannian of the module. I give a proof of part of this conjecture. The relation between this conjecture and the reduceness conjecture is explained at the end.
Type
Dissertation (Open Access)
Date
2018-09