Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Author ORCID Identifier

https://orcid.org/0000-0003-2340-1117

AccessType

Open Access Dissertation

Document Type

dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Organismic and Evolutionary Biology

Year Degree Awarded

2019

Month Degree Awarded

September

First Advisor

Jeffrey L. Blanchard

Subject Categories

Environmental Microbiology and Microbial Ecology

Abstract

Microbial metabolism is a key controller of ecosystem processes (e.g., carbon cycling). However, we are only starting to identify the molecular mechanisms and feedback in response to long-term warming. My dissertation integrates multi-omics techniques to capture changes in soil microbial communities after long-term warming exposure. The research projects leverage three warming sites (i.e., SWaN, Barre Woods, and Prospect Hill) located in Western Massachusetts at Harvard Forest. These sites provided a unique experimental setup to better understand microbes in response to long-term temperature change. For the three research projects, we delved into the (i) microbial biodiversity across all three warming sites, (ii) integration of soil carbon chemistry and metatranscriptomics at the Barre Woods site, (iii) and a time series of soil metatranscriptomes at the Prospect Hill site. Overall, these studies revealed a broader scope of changes occurring with long-term warming than anticipated. The warming treatment induced shifts in fungi groups and recalcitrant carbon decomposer bacteria. Changes in microbial functions involved metabolic pathways associated to biogeochemical and cellular stability as result of nutrient limitation. Further, our results provided new insights in microbial response to chronic temperature stress, suggested an ongoing change in community structure and function, and linked soil carbon decrease to cellular processes using high throughput molecular techniques. This information will help to better understand interactions between microbial communities and the Earth’s climate.

DOI

https://doi.org/10.7275/15007293

Share

COinS