Dose-Response: An International Journal: Volume 12, Issue 2
No Thumbnail Available
Volume
Number
Issue Date
2014-30-06
Journal Title
Journal ISSN
Journal Volume
Articles
Dose-Response Vol 12, no 2, Table of Contents
(2014-03-31)
REMEDY FOR RADIATION FEAR — DISCARD THE POLITICIZED SCIENCE
(2014-03-31) Cuttler, Jerry R.
Seeking a remedy for the radiation fear in Japan, the author re-examined an article on radiation hormesis. It describes the background for this fear and evidence in the first UNSCEAR report of a reduction in leukemia of the Hiroshima survivors in the low dose zone. The data are plotted and dose-response models are drawn. While UNSCEAR suggested the extra leukemia incidence is proportional to radiation dose, the data are consistent with a hormetic J-shape and a threshold at about 100 rem (1 Sv). UNSCEAR data on lifespan reduction of mammals exposed continuously to gamma rays indicate a 2 gray/year threshold. This contradicts the conceptual basis for radiation protection and risk determination established in 1956-58. In this paper, beneficial effects and thresholds for harmful effects are discussed, and the biological mechanism is explained. The key point: the rate of DNA damage (double-strand breaks) caused by background radiation is 1000 times less than the endogenous (spontaneous) rate. It is the effect of radiation on an organism’s very powerful adaptive protection systems that determines the dose-response characteristic. Low radiation up-regulates the protection systems, while high radiation impairs these systems. The remedy for radiation fear is to expose and discard the politicized science.
CORRECTING SYSTEMIC DEFICIENCIES IN OUR SCIENTIFIC INFRASTRUCTURE
(2014-06-30) Doss, Mohan
Scientific method is inherently self-correcting. When different hypotheses are proposed, their study would result in the rejection of the invalid ones. If the study of a competing hypothesis is prevented because of the faith in an unverified one, scientific progress is stalled. This has happened in the study of low dose radiation. Though radiation hormesis was hypothesized to reduce cancers in 1980, it could not be studied in humans because of the faith in the unverified linear no-threshold model hypothesis, likely resulting in over 15 million preventable cancer deaths worldwide during the past two decades, since evidence has accumulated supporting the validity of the phenomenon of radiation hormesis. Since our society has been guided by scientific advisory committees that ostensibly follow the scientific method, the long duration of such large casualties is indicative of systemic deficiencies in the infrastructure that has evolved in our society for the application of science. Some of these deficiencies have been identified in a few elements of the scientific infrastructure, and remedial steps suggested. Identifying and correcting such deficiencies may prevent similar tolls in the future.
NONLINEAR EFFECTS OF NANOPARTICLES: BIOLOGICAL VARIABILITY FROM HORMETIC DOSES, SMALL PARTICLE SIZES, AND DYNAMIC ADAPTIVE INTERACTIONS
(2014-06-30) Bell, Iris R.; Ives, John A.; Jonas, Wayne B.
Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1-100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the “same” material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nanoforms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles.
NON-LINEAR ADAPTIVE PHENOMENA WHICH DECREASE THE RISK OF INFECTION AFTER PRE-EXPOSURE TO RADIOFREQUENCY RADIATION
(2014-06-30) Mortazavi, S.M.J.; Motamedifar, M.; Namdari, G.; Taheri, M.; Mortazavi, A.R.; Shokrpour, N.
Substantial evidence indicates that adaptive response induced by low doses of ionizing radiation can result in resistance to the damage caused by a subsequently high-dose radiation or cause cross-resistance to other non-radiation stressors. Adaptive response contradicts the linear-non-threshold (LNT) dose-response model for ionizing radiation. We have previously reported that exposure of laboratory animals to radiofrequency radiation can induce a survival adaptive response. Furthermore, we have indicated that pre-exposure of mice to radiofrequency radiation emitted by a GSM mobile phone increased their resistance to a subsequent Escherichia coli infection. In this study, the survival rates in animals receiving both adapting (radiofrequency) and challenge dose (bacteria) and the animals receiving only the challenge dose (bacteria) were 56% and 20%, respectively. In this light, our findings contribute to the assumption that radiofrequency-induced adaptive response can be used as an efficient method for decreasing the risk of infection in immunosuppressed irradiated individuals. The implication of this phenomenon in human’s long term stay in the space is also discussed.