Loading...
Thumbnail Image
Publication

Forecasting RevPAR in a Declining Market: An Application of Time Series Forecasting Techniques to U.S. Weekly RevPAR Data

Abstract
This study utilizes common time series forecasting methods to determine which of several simple, popular time series forecasting techniques was the best predictor of the decline in United States weekly RevPAR as the lodging industry entered its severe downturn in 2009. This study identifies the strong seasonality and trend components contained in historic U.S. weekly RevPAR data and utilized that data to test various moving average, exponential, and seasonal forecasting methods. The study clearly identified that seasonal forecasting methods such as Holt-Winters are far superior for use with this dataset than other methods and that among the various seasonal forecasting methods that multiplicative forecasting methods are somewhat superior to additive forecasting methods in working with this dataset.
Type
event
event
Date
2011-01-08
Publisher
Degree
Rights
License