Publication

LONGITUDINAL RELAXATION-TIME FOR DILUTE QUANTUM GASES

Abstract
We calculate the longitudinal relaxation timeT 1 for a polarized spin-1/2 Fermi gas, in zero magnetic field, for conditions of temperatureT and densityn such that Boltzmann statistics are valid. Our results show generally thatT 1 is independent of polarization of the gas. At highT, where the thermal wavelength lambda is small compared to the scattering lengtha, T 1 is proportionalT 1/2, while at lowT, such that lambda is greater thana, T 1 is proportional toT –1/2.T 1 thus has a minimum at some intermediate temperature confirming the numerical results of Shizgal. Physical arguments show that the existence of the minimum does not depend on the presence of an attractive part of the potential. As an example of the expected temperature dependence we calculateT 1 numerically, via the distorted-wave Born approximation, for the case of a gas interacting via a hard core. We also computeT 1 for a spin-1/2 Bose gas, which also shows a minimum.
Type
article
article
Date
1990
Publisher
Degree
Advisors
Rights
License
Research Projects
Organizational Units
Journal Issue
Embargo
DOI
Publisher Version
Embedded videos