Publication:
The Identification of Notch1 Functional Domains Responsible for its Physical Interaction with PKCθ

dc.contributor.advisorLisa M Minter
dc.contributor.advisorBarbara A Osborne
dc.contributor.advisorWilmore C Webley
dc.contributor.authorRossiter, Wesley D
dc.contributor.departmentUniversity of Massachusetts Amherst
dc.contributor.departmentMolecular & Cellular Biology
dc.date2024-03-28T20:02:56.000
dc.date.accessioned2024-04-26T18:18:29Z
dc.date.available2024-04-26T18:18:29Z
dc.date.submittedFebruary
dc.date.submitted2016
dc.description.abstractThe adaptive immune system is a complex network of cells that protect the body from invasion by foreign pathogens. Crucial to the function of the adaptive immune system is the activation, proliferation and differentiation of T cells in response to foreign pathogen presentation by antigen presenting cells. T cell activation is driven through different signaling pathways that are dependent on phosphorylation of substrates by kinases. In the PLC pathway that activates the il2 gene program, Protein Kinase C-q (PKCq) and Notch1 localize to the immunological synapse and help drive the signaling cascade that leads to robust T cell activation. It has been previously shown that PKCq and Notch1, both interact with the CBM complex at the immunological synapse. Additionally, PKCq and Notch1 both have specific cytoplasmic and nuclear functions that help drive the il2 gene program. Here, we demonstrate the localization of PKCq and Notch1 constructs transfected into HEK 293 cells. The use of deletion constructs of Notch1 was intended to inform us of what functional domain of Notch1 was responsible for the interaction with PKCq, however no direct interaction was demonstrated with the PKCq and Notch1 constructs used in these experiments. We hypothesize that this is likely due to the inactive form of PKCq found in our construct, or a result of the cell type used in these experiments.
dc.description.degreeMaster of Science (M.S.)
dc.identifier.doihttps://doi.org/10.7275/7956317
dc.identifier.orcidN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14394/33336
dc.relation.urlhttps://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1347&context=masters_theses_2&unstamped=1
dc.source.statuspublished
dc.subjectPKC-theta
dc.subjectNotch1
dc.subjectT Cells
dc.subjectImmunology
dc.subjectImmunity
dc.titleThe Identification of Notch1 Functional Domains Responsible for its Physical Interaction with PKCθ
dc.typeopenaccess
dc.typearticle
dc.typethesis
digcom.contributor.authorisAuthorOfPublication|email:wrossite@umass.edu|institution:University of Massachusetts Amherst|Rossiter, Wesley D
digcom.identifiermasters_theses_2/333
digcom.identifier.contextkey7956317
digcom.identifier.submissionpathmasters_theses_2/333
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Wesley_Rossiter_Masters_Thesis_2.18.16.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format
Collections