Loading...
Thumbnail Image
Publication

Impacts of Carbonate Buffering on Atmospheric Equilibration of CO2, δ13CDIC, and Δ14CDIC in Rivers and Streams

Abstract
Rivers and streams play an important role within the global carbon cycle, in part through emissions of carbon dioxide (CO2) to the atmosphere. However, the sources of this CO2 and their spatiotemporal variability are difficult to constrain. Recent work has highlighted the role of carbonate buffering reactions that may serve as a source of CO2 in high alkalinity systems. In this study, we seek to develop a quantitative framework for the role of carbonate buffering in the fluxes and spatiotemporal patterns of CO2 and the stable and radio- isotope composition of dissolved inorganic carbon (DIC). We incorporate DIC speciation calculations of carbon isotopologues into a stream network CO2 model and perform a series of simulations, ranging from the degassing of a groundwater seep to a hydrologically-coupled 5th-order stream network. We find that carbonate buffering reactions contribute >60% of emissions in high-alkalinity, moderate groundwater-CO2 environments. However, atmosphere equilibration timescales of CO2 are minimally affected, which contradicts hypotheses that carbonate buffering maintains high CO2 across Strahler orders in high alkalinity systems. In contrast, alkalinity dramatically increases isotope equilibration timescales, which acts to decouple CO2 and DIC variations from the isotopic composition even under low alkalinity. This significantly complicates a common method for carbon source identification. Based on similar impacts on atmospheric equilibration for stable and radio- carbon isotopologues, we develop a quantitative method for partitioning groundwater and stream corridor carbon sources in carbonate-dominated watersheds. Together, these results provide a framework to guide fieldwork and interpretations of stream network CO2 patterns across variable alkalinities.
Type
article
article
Date
2024-01-01
Publisher
Degree
Advisors
Rights
UMass Amherst Open Access Policy
License
http://creativecommons.org/licenses/by-nc/4.0/