Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

https://orcid.org/0009-0006-4480-2197

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Architecture

Degree Type

Master of Architecture (M.Arch.)

Year Degree Awarded

2023

Month Degree Awarded

May

Abstract

Sports have grown to be one of the largest industries in the United States and the world. Groups such as the National Football League, the Major League of Baseball, and the National Basketball Association, make billions of dollars every year.[1] Along with this growing popularity has come the development of some of the most incredible pieces of architecture, showing off power, strength, and elitism. Teams are constantly competing to give their fans the best experience possible, including the greatest stadiums in the country. However, these technological and architectural feats come with environmental costs. Stadiums that hold over 80,000[2] spectators and a couple of thousands of employees are typically made entirely of steel and concrete and are responsible for incredible amounts of carbon dioxide. Often, they are fully utilized for a short amount of it. After a team relocates or decides their current stadium is not good enough, they destroy it to build a new one. In a field that is more concerned with the spectacle, this architectural study explores how the design of athletic facilities can be more sustainable through the use of long-span mass timber structures. It explores the history of stadium design and the desire to create the next big thing. The author goes into detail exploring the use of mass timber in the field and presents how it not only can be sustainable but also a demonstration of the spectacle they desire. The design portion of this project will center around a new Indoor Track Facility for the University of Massachusetts. The structure will highlight the research from beginning to end, constructed from mass timber arches, beams, and columns.

Sports have grown to be one of the largest industries in the United States and the world. Groups such as the National Football League, the Major League of Baseball, and the National Basketball Association, make billions of dollars every year.[1] Along with this growing popularity has come the development of some of the most incredible pieces of architecture, showing off power, strength, and elitism. Teams are constantly competing to give their fans the best experience possible, including the greatest stadiums in the country. However, these technological and architectural feats come with environmental costs. Stadiums that hold over 80,000[2] spectators and a couple of thousands of employees are typically made entirely of steel and concrete and are responsible for incredible amounts of carbon dioxide. Often, they are fully utilized for a short amount of it. After a team relocates or decides their current stadium is not good enough, they destroy it to build a new one. In a field that is more concerned with the spectacle, this architectural study explores how the design of athletic facilities can be more sustainable through the use of long-span mass timber structures. It explores the history of stadium design and the desire to create the next big thing. The author goes into detail exploring the use of mass timber in the field and presents how it not only can be sustainable but also a demonstration of the spectacle they desire. The design portion of this project will center around a new Indoor Track Facility for the University of Massachusetts. The structure will highlight the research from beginning to end, constructed from mass timber arches, beams, and columns.

[1] Gough, “Total Revenue of All National Football League Teams from 2001 to 2020.”

[2] Steinbach, “7 Ways Stadium Design Has Changed.”

DOI

https://doi.org/10.7275/35387374

First Advisor

Robert Williams

Share

COinS