Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

https://orcid.org/0009-0007-6032-409X

Access Type

Campus-Only Access for Five (5) Years

Document Type

thesis

Degree Program

Environmental Conservation

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2023

Month Degree Awarded

September

Abstract

Watershed systems are experiencing rapid changes to water quality and hydrologic regimes due in part to climate-induced changes in temperature and precipitation, urbanization, and increases in aquatic invasive species. Aquatic invasive species are one of the primary threats to ecosystems, contributing to loss of biodiversity, altered hydrologic regimes, and stream degradation. Urban land use and climatic factors influence the spread of invasive species, presenting greater challenges for future invasive species management. There is a need for more research that evaluates the watershed process in connection with urban land use and climate change factors in relation to invasive species spread. This study will examine factors of climate change and land use that may be influencing the spread and occurrence of aquatic invasive plants within the Connecticut River watershed. There will be four species involved in this study: Eurasian milfoil (Myriophyllum spicatum), Variable milfoil (Myriophyllum heterophyllum), Hydrilla (Hydrilla verticillate), and the European water chestnut (Trapa natans). Hydrological conditions within the watershed will be analyzed using the SWAT model through the HAWQS interface. ArcGIS Pro will be used to combine and prepare data so that it may be utilized through MaxEnt. MaxEnt will be used to create species distribution models to estimate the probability of the presence of invasive aquatic plant species in the Connecticut river watershed.

DOI

https://doi.org/10.7275/35868471.0

First Advisor

Timothy Randhir

Second Advisor

Michael Nelson

Share

COinS