Loading...
Thumbnail Image
Publication

Machine and Statistical Learning for Sustainable Infrastructure and Mobility Systems

Abstract
This thesis presents machine and statistical learning approaches for sustainable planning in infrastructure and mobility systems. First, I have developed a convolutional neural network (CNN) to predict tree failure likelihood. Such assessments have traditionally been performed manually. I conduct a visual analysis of the predictions, indicating an approach for incorporating interpretability into model selection. Benchmarking the results against those produced by state-of-the-art CNNs, I show that a relatively simple model produces better results in a computational time that is three times faster. Via this novel framework, I demonstrate the potential of machine learning to automate and consequently reduce the costs of tree failure likelihood assessments in proximity to power lines, thereby promoting sustainable infrastructure. Secondly, I examine the effects of COVID-19 on mobility, segmented by transportation type, as well as social activity such as workplaces and residential, and their interdependencies. Using time series data across five continents, I estimate a Bayesian global vector autoregression model which explains patterns in activity and mobility trends and analyze their relationship with COVID-19 spread. I expect that the model framework and outcomes will guide policymakers to adopt appropriate measures to mitigate and safely recover from future disease outbreaks.
Type
campusone
article
thesis
Date
2024-02-01
Publisher
Advisors
Rights
License
http://creativecommons.org/licenses/by-sa/4.0/
Research Projects
Organizational Units
Journal Issue
Embargo
2024-08-01
Publisher Version
Embedded videos
Collections