Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Public Health

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2015

Month Degree Awarded

May

Abstract

Thousands of synthetic chemicals have been released into the environment, causing widespread exposures of wildlife and humans alike. Some of these chemicals are known to disrupt aspects of hormone action thus inducing abnormalities in endocrine tissues and organs. Bisphenol S (BPS) and tetrabromobisphenol A (TBBPA), two largely unstudied chemicals commonly used in consumer products, are suspected to have endocrine disrupting properties based on their similar chemical structures to known endocrine disrupting chemicals (EDCs). To determine whether developmental exposure to BPS or TBBPA induced abnormalities in the ovary, mice were administered oil, BPS or TBBPA during pregnancy and lactation. The ovaries of female offspring were examined for gross morphological, immunohistological and gene expression differences at postnatal day (PND) 22 and week 16. To determine whether these exposures alter responses to hormones, two females from each litter were administered either oil or ethinyl estradiol (EE2) from PND 19-21. Our study identified significant differences in ovarian follicular formation and gene expression after developmental TBBPA and BPS exposures. Most effects were observed at PND22 (pre-puberty), and were apparent after the EE2 challenge, suggesting that changes induced by BPS and TBBPA are age- and hormone- dependent. Our results are consistent with the hypothesis that TBBPA and BPS are EDCs; that these compounds can disrupt development of the ovary; and that the observed effects of TBBPA and BPS exposure are similar to risk factors for ovarian diseases including cancer. These findings may indicate that widespread exposures to BPS and TBBPA could have implications for public health.

DOI

https://doi.org/10.7275/6954355

First Advisor

Laura N Vandenberg

Share

COinS