Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Plant Biology

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2018

Month Degree Awarded

May

Abstract

Fall-planted forage radish (Raphanus sativus L. longipinnatus) cover crops have shown successful weed suppression and recycling of fall-captured nutrients. This research evaluated the nutrient cycling and weed suppressive benefits of forage radish cover crop mixtures to develop an integrated system for no-till sweet corn (Zea mays L. var rugosa) production that improves crop yield and soil health. Treatments included forage radish (FR), oats (Avena sativa L.) and forage radish (OFR), a mixture of peas (Pisum sativum subsp arvense L.), oats and forage radish (POFR), and no cover crop control (NCC). Subplots were assigned to nitrogen fertilizer treatments to evaluate N sufficiency and timing: 0 kg N ha-1 as the control, 28 kg N ha-1 at side-dress, and 56 kg N ha-1 with application split between planting and side-dress. Results indicated that POFR and OFR provided improved N cycling and sweet corn yield compared with FR and NCC. Early season N from decomposing cover crop residue was sufficient to eliminate the need for N fertilizer at sweet corn planting, thereby reducing input costs and risks of environmental pollution.

DOI

https://doi.org/10.7275/11945970

First Advisor

Masoud Hashemi

Second Advisor

Wesley Autio

Third Advisor

Prasanta Bhowmik

Share

COinS