Yang, Zhuo

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Faculty Member
Last Name
Yang
First Name
Zhuo
Discipline
Structural Materials
Expertise
Introduction
The natural variation of strength properties within brittle materials leads to size effect, a well-known phenomenon whereby the mean strength of a material is observed to decrease as the stressed volume increases. An important implication of size effect is that size adjustment parameters must be incorporated into multi-axial constitutive and failure models used in numerical simulations to predict material response to loading. This experimental study seeks to verify and quantify the presence of depth effect under shear failure in the orthotropic principal material directions of parallel strand lumber (PSL) and laminated veneer lumber (LVL). Torsion tests have been performed on specimens of fixed length and differing cross section to get a pure shear failure, by using a Universal Test Machine. The experimental results indicate that there is no depth effect for LVL from torsional shear stresses. PSL testing was limited to one size, and depth effect was not evaluated. A finite element model was built to simulate the torsional test for the 44 x 140 mm LVL specimen. Comparing the experimental test results and the simulation results, the model provided an accurate prediction of the torsional test for Structural Composite Lumber.
Name

Search Results

Now showing 1 - 1 of 1
  • Publication
    Torsional Shear Strength and Size Effect in Structural Composite Lumber
    (2012) Yang, Zhuo
    The natural variation of strength properties within brittle materials leads to size effect, a well-known phenomenon whereby the mean strength of a material is observed to decrease as the stressed volume increases. An important implication of size effect is that size adjustment parameters must be incorporated into multi-axial constitutive and failure models used in numerical simulations to predict material response to loading. This experimental study seeks to verify and quantify the presence of depth effect under shear failure in the orthotropic principal material directions of parallel strand lumber (PSL) and laminated veneer lumber (LVL). Torsion tests have been performed on specimens of fixed length and differing cross section to get a pure shear failure, by using a Universal Test Machine. The experimental results indicate that there is no depth effect for LVL from torsional shear stresses. PSL testing was limited to one size, and depth effect was not evaluated. A finite element model was built to simulate the torsional test for the 44x140mm LVL specimen. Comparing the experimental test results and the simulation results, the model provided an accurate prediction of the torsional test for Structural Composite Lumber.