Person:
McClements, D. Julian

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Professor, Department of Food Science, College of Natural Sciences
Last Name
McClements
First Name
D. Julian
Discipline
Food Science
Expertise
Delivery systems
Food biopolymers and colloids
Physicochemical basis of digestion
Introduction
Name

Search Results

Now showing 1 - 10 of 20
  • Publication
    The future of 3D food printing: opportunities for space applications
    (2022-01-01) Enfield, Rachael E.; Pandya, Janam K.; Lu, Jiakai; McClements, David; Kinchla, Amanda J.
    Over the past decade or so, there have been major advances in the development of 3D printing technology to create innovative food products, including for printing foods in homes, restaurants, schools, hospitals, and even space flight missions. 3D food printing has the potential to customize foods for individuals based on their personal preferences for specific visual, textural, mouthfeel, flavor, or nutritional attributes. Material extrusion is the most common process currently used to 3D print foods, which is based on forcing a fluid or semi-solid food “ink” through a nozzle and then solidifying it. This type of 3D printing application for space missions is particularly promising because a wide range of foods can be produced from a limited number of food inks in a confined area. This is especially important for extended space missions because astronauts desire and require a variety of foods, but space and resources are minimal. This review highlights the potential applications of 3D printing for creating custom-made foods in space and the challenges that need to be addressed.
  • Publication
    Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives
    (2016-01-01) Salvia-Trujillo, Laura; Martin-Belloso, Olga; McClements, David Julian
    The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables) is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.
  • Publication
    Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications
    (2021-01-01) McClements, David Julian; Öztürk, Bengü
    Bioactive lipids, such as fat-soluble vitamins, omega-3 fatty acids, conjugated linoleic acids, carotenoids and phytosterols play an important role in boosting human health and wellbeing. These lipophilic substances cannot be synthesized within the human body, and so people must include them in their diet. There is increasing interest in incorporating these bioactive lipids into functional foods designed to produce certain health benefits, such as anti-inflammatory, antioxidant, anticancer and cholesterol-lowering properties. However, many of these lipids have poor compatibility with food matrices and low bioavailability because of their extremely low water solubility. Moreover, they may also chemically degrade during food storage or inside the human gut because they are exposed to certain stressors, such as high temperatures, oxygen, light, moisture, pH, and digestive/metabolic enzymes, which again reduces their bioavailability. Nanotechnology is a promising technology that can be used to overcome many of these limitations. The aim of this review is to highlight different kinds of nanoscale delivery systems that have been designed to encapsulate and protect bioactive lipids, thereby facilitating their handling, stability, food matrix compatibility, and bioavailability. These systems include nanoemulsions, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoliposomes, nanogels, and nano-particle stabilized Pickering emulsions.
  • Publication
    Methods for Testing the Quality Attributes of Plant-Based Foods: Meat- and Processed-Meat Analogs
    (2021-01-01) McClements, David Julian; Weiss, Jochen; Kinchla, Amanda J.; Nolden, Alissa A.; Grossmann, Lutz
    The modern food system is seeing a change in consumption patterns provoked by several drivers—including ethical, health, and environmental concerns—that are increasing the sales of meat analog foods. This change is accompanied by increased research and development activities in the area of plant-based meats. The aim of the present review is to describe methods that are being employed by scientists to analyze and characterize the properties of meat alternatives and to propose standardized methods that could be utilized in the future. In particular, methods to determine the proximate composition, microstructure, appearance, textural properties, water-holding properties, cooking resilience, and sensory attributes, of plant-based meat are given. The principles behind these methods are presented, their utility is critically assessed, and practical examples will be discussed. This article will help to guide further studies and to choose appropriate methods to assess raw materials, processes, products, and consumption behavior of meat analogs
  • Publication
    Extending Emulsion Functionality: Post-Homogenization Modification of Droplet Properties
    (2016-01-01) Bai, Long; McClements, David Julian
    Homogenizers are commonly used to produce oil-in-water emulsions that consist of emulsifier-coated oil droplets suspended within an aqueous phase. The functional attributes of emulsions are usually controlled by selecting appropriate ingredients (e.g., surfactants, co-surfactants, oils, solvents, and co-solvents) and processing conditions (e.g., homogenizer type and operating conditions). However, the functional attributes of emulsions can also be tailored after homogenization by manipulating their composition, structure, or physical state. The interfacial properties of lipid droplets can be altered using competitive adsorption or coating methods (such as electrostatic deposition). The physical state of oil droplets can be altered by selecting an oil phase that crystallizes after the emulsion has been formed. The composition of the disperse phase can be altered by mixing different kinds of oil droplets together to induce inter-droplet exchange of oil molecules. The local environment of oil droplets can be altered by embedding them within hydrogel beads. The aggregation state of oil droplets can be controlled by promoting flocculation. These post-homogenization methods can be used to alter functional attributes such as physical stability, rheology, optical properties, chemical degradation, retention/release properties, and/or gastrointestinal fate.Homogenizers are commonly used to produce oil-in-water emulsions that consist of emulsifier-coated oil droplets suspended within an aqueous phase. The functional attributes of emulsions are usually controlled by selecting appropriate ingredients (e.g., surfactants, co-surfactants, oils, solvents, and co-solvents) and processing conditions (e.g., homogenizer type and operating conditions). However, the functional attributes of emulsions can also be tailored after homogenization by manipulating their composition, structure, or physical state. The interfacial properties of lipid droplets can be altered using competitive adsorption or coating methods (such as electrostatic deposition). The physical state of oil droplets can be altered by selecting an oil phase that crystallizes after the emulsion has been formed. The composition of the disperse phase can be altered by mixing different kinds of oil droplets together to induce inter-droplet exchange of oil molecules. The local environment of oil droplets can be altered by embedding them within hydrogel beads. The aggregation state of oil droplets can be controlled by promoting flocculation. These post-homogenization methods can be used to alter functional attributes such as physical stability, rheology, optical properties, chemical degradation, retention/release properties, and/or gastrointestinal fate.
  • Publication
    Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems
    (2020-01-01) Perry, Sarah L.; McClements, David Julian
    There are many areas in medicine and industry where it would be advantageous to orally deliver bioactive proteins and peptides (BPPs), including ACE inhibitors, antimicrobials, antioxidants, hormones, enzymes, and vaccines. A major challenge in this area is that many BPPs degrade during storage of the product or during passage through the human gut, thereby losing their activity. Moreover, many BPPs have undesirable taste profiles (such as bitterness or astringency), which makes them unpleasant to consume. These challenges can often be overcome by encapsulating them within colloidal particles that protect them from any adverse conditions in their environment, but then release them at the desired site-of-action, which may be inside the gut or body. This article begins with a discussion of BPP characteristics and the hurdles involved in their delivery. It then highlights the characteristics of colloidal particles that can be manipulated to create effective BPP-delivery systems, including particle composition, size, and interfacial properties. The factors impacting the functional performance of colloidal delivery systems are then highlighted, including their loading capacity, encapsulation efficiency, protective properties, retention/release properties, and stability. Different kinds of colloidal delivery systems suitable for encapsulation of BPPs are then reviewed, such as microemulsions, emulsions, solid lipid particles, liposomes, and microgels. Finally, some examples of the use of colloidal delivery systems for delivery of specific BPPs are given, including hormones, enzymes, vaccines, antimicrobials, and ACE inhibitors. An emphasis is on the development of food-grade colloidal delivery systems, which could be used in functional or medical food applications. The knowledge presented should facilitate the design of more effective vehicles for the oral delivery of bioactive proteins and peptides.
  • Publication
    Formulation of More Efficacious Curcumin Delivery Systems Using Colloid Science: Enhanced Solubility, Stability, and Bioavailability
    (2020-01-01) Zheng, Bingjing; McClements, David Julian
    Curcumin is a bioactive constituent isolated from turmeric that has historically been used as a seasoning, pigment, and herbal medicine in food. Recently, it has become one of the most commonly studied nutraceuticals in the pharmaceutical, supplement, and food areas because of its myriad of potential health benefits. For instance, it is claimed to exhibit antioxidant, anti-inflammatory, antimicrobial, antiparasite, and anticancer activities when ingested as a drug, supplement, or food. Toxicity studies suggest that it is safe to consume, even at relatively high levels. Its broad-spectrum biological activities and low toxicity have meant that it has been widely explored as a nutraceutical ingredient for application in functional foods. However, there are several hurdles that formulators must overcome when incorporating curcumin into commercial products, such as its low water solubility (especially under acidic and neutral conditions), chemical instability (especially under neutral and alkaline conditions), rapid metabolism by enzymes in the human body, and limited bioavailability. As a result, only a small fraction of ingested curcumin is actually absorbed into the bloodstream. These hurdles can be at least partially overcome by using encapsulation technologies, which involve trapping the curcumin within small particles. Some of the most commonly used edible microparticles or nanoparticles utilized for this purpose are micelles, liposomes, emulsions, solid lipid particles, and biopolymer particles. Each of these encapsulation technologies has its own benefits and limitations for particular product applications and it is important to select the most appropriate one.
  • Publication
    Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and Stability
    (2019-01-01) Bai, Long; Lv, Shanshan; Huan, Siqi; McClements, David Julian; Rojas, Orlando J.
    Oil-in-water Pickering emulsions were successfully prepared via high-energy microfluidization using cellulose nanocrystals (CNC) as interfacial stabilizers. The influence of microfluidization pressure, CNC concentration, and oil type on droplet size and emulsion stability was determined. Under optimized homogenization conditions, CNC formed and stabilized emulsions based on corn, fish, sunflower, flax, orange, and MCT oils. The droplet size decreased with increasing microfluidization pressure from 9 to 17 kpsi, but then increased slightly at 19 kpsi. The creaming stability of the emulsions increased with CNC concentration, which was mainly attributed to the decrease in droplet size (mean particle diameter < 1 μm at CNC-to-oil ratios greater than 1:10) and slightly increased viscosity. The Pickering emulsions were stable to droplet coalescence, presumably due to strong electrostatic and steric repulsions between the lipid droplets carrying adsorbed nanoparticles. The Pickering emulsions had good stability over a range of environmental stresses: pH 3 to 10; NaCl ≤ 100 mM; temperature from 30 to 90 °C. Droplet flocculation was, however, observed under more acidic conditions (pH 2) and at high ionic strength (200–500 mM NaCl), owing to electrostatic screening. Our results indicate that microfluidization is an effective method for forming CNC-stabilized Pickering emulsions suitable for utilization in the food industry.
  • Publication
    Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials
    (2021-01-01) Sani, Mahmood Alizadeh; Azizi-Lalabadi, Maryam; Tavassoli, Milad; Mohammadi, Keyhan; McClements, David Julian
    Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
  • Publication
    Segregation Behavior of Polysaccharide-Polysaccharide Mixtures - A Feasability Study
    (2019-01-01) Zeeb, Benjamin; Jost, Theresa; McClements, David Julian; Weiss, Jochen
    The segregative phase separation behavior of biopolymer mixtures composed entirely of polysaccharides was investigated. First, the electrical, optical, and rheological properties of alginate, modified beet pectin, and unmodified beet pectin solutions were characterized to determine their electrical charge, molecular weight, solubility, and flow behavior. Second, suitable conditions for inducing phase segregation in biopolymer mixtures were established by measuring biopolymer concentrations and segregation times. Third, alginate–beet pectin mixtures were blended at pH 7 to promote segregation and the partitioning of the biopolymers between the upper and lower phases was determined using UV–visible spectrophotometry, colorimetry, and calcium sensitivity measurements. The results revealed that phase separation depended on the overall biopolymer concentration and the degree of biopolymer hydrophobicity. A two-phase system could be formed when modified beet pectins (DE 68%) were used but not when unmodified ones (DE 53%) were used. Our measurements demonstrated that the phase separated systems consisted of a pectin-rich lower phase and an alginate-rich upper phase. These results suggest that novel structures may be formed by utilization of polysaccharide–polysaccharide phase separation. By controlling the product formulation and processing conditions it may therefore be possible to fabricate biopolymer particles with specific dimensions, shapes, and internal structures.