Person:
Xiao, Hang

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
hangxiao@foodsci.umass.edu
Last Name
Xiao
First Name
Hang
Discipline
Food Science
Expertise
Cancer preventive dietary components
Diet-based strategy for cancer prevention
Enhancement of biological activity of dietary components by combination regimen
Food processing and nanotechnology
Introduction
Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Inhibitory Effects of Peptide Lunasin in Colorectal Cancer HCT-116 Cells and Their Tumorsphere-Derived Subpopulation
    (2020-01-01) Fernández-Tomé, Samuel; Xu, Fei; Han, Yanhui; Hernández-Ledesma, Bianca; Xiao, Hang
    The involvement of cancer stem-like cells (CSC) in the tumor pathogenesis has profound implications for cancer therapy and chemoprevention. Lunasin is a bioactive peptide from soybean and other vegetal sources with proven protective activities against cancer and other chronic diseases. The present study focused on the cytotoxic effect of peptide lunasin in colorectal cancer HCT-116 cells, both the bulk tumor and the CSC subpopulations. Lunasin inhibited the proliferation and the tumorsphere-forming capacity of HCT-116 cells. Flow cytometry results demonstrated that the inhibitory effects were related to apoptosis induction and cell cycle-arrest at G1 phase. Moreover, lunasin caused an increase in the sub-GO/G1 phase of bulk tumor cells, linked to the apoptotic events found. Immunoblotting analysis further showed that lunasin induced apoptosis through activation of caspase-3 and cleavage of PARP, and could modulate cell cycle progress through the cyclin-dependent kinase inhibitor p21. Together, these results provide new evidence on the chemopreventive activity of peptide lunasin on colorectal cancer by modulating both the parental and the tumorsphere-derived subsets of HCT-116 cells.
  • Publication
    Effects of Molecular Distillation on the Chemical Components, Cleaning, and Antibacterial Abilities of Four Different Citrus Oils
    (2021-01-01) Yang, Feilong; Zhang, Huijuan; Tian, Guifang; Ren, Wenbo; Li, Juan; Xiao, Hang; Zheng, Jinkai
    Essential oils (EOs) from citrus fruits are excellent aromatic resources that are used in food, cosmetics, perfume, and cleaning products. EOs extracted from four citrus varieties, sweet orange, grapefruit, mandarin, and lemon, were separated into two fractions by molecular distillation. The composition, physicochemical properties, cleaning ability, and antimicrobial activity of each EO were then systematically evaluated. The relationships between each of the aforementioned characteristics are also discussed. In keeping with the principle of "like dissolves like," most citrus EOs show better cleaning ability than acetone and all tend to dissolve the fat-soluble pigment. The key components of citrus EOs are 1-Decanol, α-terpineol, geraniol, and linalool for the inhibition of Staphylococcus aureus, Escherichia coli, Candida albicans, and Vibrio parahaemolyticus, respectively. The findings of this study will be of significant importance for the effective utilization of citrus peel resources and in the development of future applications for citrus EOs. Chemical Compounds Studied in This Article: (+)-α-Pinene (PubChem CID: 6654); β-Phellandrene (PubChem CID: 11142); 3-Carene (PubChem CID: 26049); β-Myrcene (PubChem CID: 31253); D-Limonene (PubChem CID: 440917); γ-Terpinene (PubChem CID: 7461); Octanal (PubChem CID: 454); Decanal (PubChem CID: 8175); Linalool (PubChem CID: 6549); 1-Octanol (PubChem CID: 957); β-Citral (PubChem CID: 643779); α-Terpineol (PubChem CID: 17100); Hedycaryol (PubChem CID: 5365392); α-Citral (PubChem CID: 638011); 1-Decanol (PubChem CID: 8174); Geraniol (PubChem CID: 637566).