Loading...
Citations
Abstract
Modern laboratory equipments to measure the excited-state lifetime of fluorophores usually include an expensive picosecond pulsed-laser excitation source, a fragile photomultiplier tube, and a large instrument body for optics. A portable and robust device to make fluorescence lifetime measurement in nanosecond scale is of great attraction for chemists and biologists. This dissertation reports the development of a portable LED time-domain fluorimeter from an all-solid-state discrete-component prototype to its advanced CMOS integrated circuit implementation. The motivation of the research is to develop a multiplexed fluorimeter for point-of-care diagnosis. Instruments developed by this novel method have higher fill factor, are more portable, and are fabricated at lower cost.
Type
Dissertation (Open Access)
Date
2016-05